The last theorem cannot be generalized from atomic filters to arbitrary filters, as it's shown by the following example:

Example 13.61. $\mathcal{A} \geq_1 \mathcal{B} \land \mathcal{B} \geq_1 \mathcal{A}$ but \mathcal{A} is not isomorphic to \mathcal{B} for some filters \mathcal{A} and \mathcal{B} .

Proof. Consider $\mathcal{A} = \uparrow^{\mathbb{R}}[0;1]$ and $\mathcal{B} = \prod \{\uparrow^{\mathbb{R}}[0;1+\varepsilon) \mid \varepsilon > 0\}$. Then the function $f = \lambda x \in \mathbb{R}: x/2$ witnesses both inequalities $\mathcal{A} \ge_1 \mathcal{B}$ and $\mathcal{B} \ge_1 \mathcal{A}$. But these filters cannot be isomorphic because only one of them is principal.

Lemma 13.62. Let f_0 and f_1 be Set-morphisms. Let $f(x; y) = (f_0 x; f_1 y)$ for a function f. Then

$$\left\langle \uparrow^{\mathsf{FCD}(\operatorname{Src} f_0 \times \operatorname{Src} f_1; \operatorname{Dst} f_0 \times \operatorname{Dst} f_1)} f \right\rangle (\mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}) = \left\langle \uparrow^{\mathsf{FCD}} f_0 \right\rangle \mathcal{A} \times^{\mathsf{RLD}} \left\langle \uparrow^{\mathsf{FCD}} f_1 \right\rangle \mathcal{B}$$

Proof. $\langle \uparrow^{\mathsf{FCD}(\operatorname{Src} f_0 \times \operatorname{Src} f_1; \operatorname{Dst} f_0 \times \operatorname{Dst} f_1)} f \rangle (\mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}) = \langle \uparrow^{\mathsf{FCD}(\operatorname{Src} f_0 \times \operatorname{Src} f_1; \operatorname{Dst} f_0 \times \operatorname{Dst} f_1)} f \rangle \prod \{\uparrow^{\operatorname{Src} f_0 \times \operatorname{Src} f_1}(A \times B) \mid A \in \mathcal{A}, B \in \mathcal{B}\} = \prod \{\uparrow^{\operatorname{Dst} f_0 \times \operatorname{Dst} f_1} \langle f \rangle (A \times B) \mid A \in \mathcal{A}, B \in \mathcal{B}\} = \prod \{\uparrow^{\operatorname{Dst} f_0 \times \operatorname{Dst} f_1} \langle f \rangle (A \times B) \mid A \in \mathcal{A}, B \in \mathcal{B}\} = \prod \{\uparrow^{\operatorname{Dst} f_0 \times \operatorname{Dst} f_1} \langle f_0 \rangle A \times^{\mathsf{RLD}} \uparrow^{\operatorname{Dst} f_1} \langle f_1 \rangle B \mid A \in \mathcal{A}, B \in \mathcal{B}\} = \prod \{\uparrow^{\operatorname{Dst} f_0} \langle f_0 \rangle A \times^{\mathsf{RLD}} \uparrow^{\operatorname{Dst} f_1} \langle f_1 \rangle B \mid A \in \mathcal{A}\} \in \mathcal{A}\} = \langle \uparrow^{\mathsf{FCD}} f_0 \rangle \mathcal{A} \times^{\mathsf{RLD}} \langle \uparrow^{\mathsf{FCD}} f_1 \rangle \mathcal{B}.$

Theorem 13.63. Let f be a monovalued reloid. Then GR f is isomorphic to the filter dom f.

Proof. Let f be a monovalued reloid. There exists a function $F \in \text{GR } f$. Consider the bijective function $p = \lambda x \in \text{dom } F$: (x; Fx).

 $\langle p \rangle \text{dom } F = F \text{ and consequently } \langle p \rangle \text{dom } f = \prod \left\{ \uparrow^{\mathsf{RLD}(\operatorname{Src} f; \operatorname{Dst} f)} \langle p \rangle \text{dom } K \mid K \in \operatorname{GR} f \right\} = \prod \left\{ \uparrow^{\mathsf{RLD}(\operatorname{Src} f; \operatorname{Dst} f)} \langle p \rangle \text{dom}(K \cap F) \mid K \in \operatorname{GR} f \right\} = \prod \left\{ \uparrow^{\mathsf{RLD}(\operatorname{Src} f; \operatorname{Dst} f)} (K \cap F) \mid K \in \operatorname{GR} f \right\} = \prod \left\{ \uparrow^{\mathsf{RLD}(\operatorname{Src} f; \operatorname{Dst} f)} K \mid K \in \operatorname{GR} f \right\} = \operatorname{GR} f.$ Thus p witnesses that $\operatorname{GR} f$ is isomorphic to the filter dom f. \Box

Corollary 13.64. The graph of a monovalued reloid with atomic domain is atomic.

Corollary 13.65. GR $id_{\mathcal{A}}^{\mathsf{RLD}}$ is isomorphic to \mathcal{A} for every filter \mathcal{A} .

Theorem 13.66. There are atomic filters incomparable by Rudin-Keisler order.

Proof. See [13].

Theorem 13.67. \geq_1 and \geq_2 are different relations.

Proof. Consider a is an arbitrary non-empty filter. Then $a \ge 10^{\mathfrak{F}(\text{Base}(a))}$ but not $a \ge 20^{\mathfrak{F}(\text{Base}(a))}$. \Box

Proposition 13.68. If $a \ge_2 b$ where a is an ultrafilter then b is also an ultrafilter.

Proof. $b = \langle \uparrow^{\mathsf{FCD}} f \rangle a$ for some $f: \operatorname{Base}(a) \to \operatorname{Base}(b)$. So b is an ultrafilter since f is monovalued. \Box

Corollary 13.69. If $a \ge_1 b$ where a is an ultrafilter then b is also an ultrafilter or $0^{\mathfrak{F}(\text{Base}(a))}$.

Proof. $b \sqsubseteq \langle \uparrow^{\mathsf{FCD}} f \rangle a$ for some $f: \text{Base}(a) \to \text{Base}(b)$. Therefore $b' = \langle \uparrow^{\mathsf{FCD}} f \rangle a$ is an ultrafilter. From this our statement follows.

Proposition 13.70. Principal filters, generated by sets of the same cardinality, are isomorphic.

Proof. Let A and B be sets of the same cardinality. Then there are a bijection f from A to B. We have $\langle f \rangle A = B$ and thus A and B are isomorphic.

Proposition 13.71. If a filter is isomorphic to a principal filter, then it is also a principal filter induced by a set with the same cardinality.

Proof. Let A be a principal filter and B is a filter isomorphic to A. Then there are sets $X \in A$ and $Y \in B$ such that there are a bijection $f: X \to Y$ such that $\langle f \rangle A = B$.