Definition 7.27:

f

GR

f

.

Proof of theorem 7.30: 1. Added missing “GR”. 2.

⊓ → ∩

.

Proof of theorem 7.35:

f

GR

f

.

7.5 Categories of reloids:

(

f

;

A

;

B

)

(

A

;

B

;

f

)

.

7.6 Monovalued and injective reloids: funcoid

reloid.

Definition 7.41:

A

B

.

Theorems 6.102, 7.43: Removed

α

Src

f

:

.

Proof of theorem 7.48, proof of theorem 7.50, proof of theorem 7.56, proof of theorem 7.57: More
specialized: theorem 4.116

proposition 4.189.

Proof of theorem 7.58:

f

F

.

Lemma 8.4 and its proof: Dst

f

V

.

Proof of theorem 8.9: 1.

A ×

RLD

B →

(

FCD

)(

A ×

RLD

B

)

Removed

.

Proof of proposition 8.10: i

is.

Proof of theorem 8.17: 1.

F

S

. 2. Proof clarified.

Proof of theorem 8.18:

A

X

.

Conjecture 8.27:

a

→ A

,

b

→ B

.

9.1.1 Pretopology: The section completely rewritten (and much shortened), multiple errors cor-
rected.

9.1.2 Proximity spaces:

h−i → h−i

in several places.

9.1.3 Uniform spaces:

ν

µ

several times.

9.2:

f

1

f

.

Threom 9.5: Added “of a partially ordered dagger precategory”.

Proof of theorem 9.7:

I

A

f

|

A

.

Proposition 10.25:

X

Y

X

Y

=

A

.

Theorem 10.12: relation

binary relation.

Proof of proposition 10.20: More specific: theorem 4.111

proposition 4.185.

Proof of proposition 11.5: Removed “up”.

Lemma 11.7: filter

filters.

Proposition 11.24 and its proof:

A → B

.

Theorem 11.35: isomorphism

being isomorphic.

Proof of theorem 11.41: dom

f

1

F

(

Base

(

A

))

.

Proof of theorem 11.45: up

B → B

.

Proof of proposition 11.46:

⊆ → ⊑

.

Proof of proposition 11.47: Several errors.

Proof of theorem 11.58: 1.

(

F

;

Base

(

a

);

Base

(

a

))

F

. 2. up

a

a

. 3.

⊇ → ⊒

.

11.3 Rudin-Keisler equivalence and Rudin-Keisler order: two examples

example.

3