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This file is a rough draft.
It is a continuation of [5].



CHAPTER 1

Introduction

I remind some definitions from volume 1 [5].

I denote a set definition like {I"ﬂi‘g} instead of customary {x € A | P(x)} (in

order to reduce formulas size).
I denote partial order as C. I denote lattice operations as [], | |, M, L.
The following generalizes monovalued morphisms in category Rel.
Let Hom-sets be complete lattices.

DEFINITION 1955. A morphism f of a partially ordered category is metamono-
valued when ([1G) o f = [],cq(g o f) whenever G is a set of morphisms with a
suitable domain and image.

DEFINITION 1956. A morphism f of a partially ordered category is metainjec-
tive when fo([1G) =[1,cq(fog) whenever G is a set of morphisms with a suitable
domain and image.

OBvVIOUS 1957. Metamonovaluedness and metainjectivity are dual to each
other.

DEFINITION 1958. A morphism f of a partially ordered category is metacom-
plete when f o (LJG) = |],eq(f o g) whenever G is a set of morphisms with a
suitable domain and image.

DEFINITION 1959. A morphism f of a partially ordered category is co-
metacomplete when (| |G) o f = |],c5(g o f) whenever G is a set of morphisms
with a suitable domain and image.

Let now Hom-sets be meet-semilattices.

DEFINITION 1960. A morphism f of a partially ordered category is weakly
metamonovalued when (gMh)o f = (go f)M(ho f) whenever g and h are morphisms
with a suitable domain and image.

DEFINITION 1961. A morphism f of a partially ordered category is weakly
metainjective when fo (gMh) = (fog)M(foh) whenever g and h are morphisms
with a suitable domain and image.

Let now Hom-sets be join-semilattices.

DEFINITION 1962. A morphism f of a partially ordered category is weakly
metacomplete when fo (gUh) = (fog)U(foh) whenever g and h are morphisms
with a suitable domain and image.

DEFINITION 1963. A morphism f of a partially ordered category is weakly co-
metacomplete when (gUh)o f = (go f)U (ho f) whenever g and h are morphisms
with a suitable domain and image.

OBvIOUS 1964.

1°. Metamonovalued morphisms are weakly metamonovalued.
2°. Metainjective morphisms are weakly metainjective.
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1. INTRODUCTION 7

3°. Metacomplete morphisms are weakly metacomplete.
4°. Co-metacomplete morphisms are weakly co-metacomplete.

DEFINITION 1965. For a partially ordered dagger category I will call monoval-
ued morphism such a morphism f that fo ff C 1pst f-

DEFINITION 1966. For a partially ordered dagger category I will call entirely
defined morphism such a morphism f that ffo f 3 lsre ¢-

DEFINITION 1967. For a partially ordered dagger category I will call injective
morphism such a morphism f that ffo f C lg. I

DEFINITION 1968. For a partially ordered dagger category I will call surjective
morphism such a morphism f that fo fT 3 Ipg ;.

REMARK 1969. It is easy to show that this is a generalization of monovalued,
entirely defined, injective, and surjective functions as morphisms of the category
Rel.

OBvIOUS 1970. “Injective morphism” is a dual of “monovalued morphism” and
“surjective morphism” is a dual of “entirely defined morphism”.



CHAPTER 2

Products in dagger categories with complete
ordered Hom-sets

NoOTE 1971. What I previously denoted [ F' is now denoted H(L) F (and like-
wise for J]). The other draft chapters referring to this chapter may be not yet
updated.

PROPOSITION 1972.

1°. Every entirely defined monovalued morphism is metamonovalued and
metacomplete.

2°. Every surjective injective morphism is metainjective and co-
metacomplete.

PROOF. Let’s prove the first (the second follows from duality):
Let f be an entirely defined monovalued morphism.

([1G) o f ET,ec(g 0 f) by monotonicity of composition.
Using the fact that f is monovalued and entirely defined:

(ngc(gof)) o fT Eﬂgec(gofoﬁ) C1G;

Myeal9o ) E (Myealoo N)) o flofEMG) o f.

So (MG o f =Nyealgo f):

Let f be a entirely defined monovalued morphism.
fo(UG) 3 ,eq(f og) by monotonicity of composition.
Using the fact that f is entirely defined and monovalued:

170 (Uyea(F09)) 2 Uyea(fTo fog) TG

ngeG(fog) | fofT Ol_lgeG(fog) dfo (I_lG)
So fo(UG) =yec(fo9) O

1. General product in partially ordered dagger category

To understand the below better, you can restrict your imagination to the case
when C is the category Rel.

1.1. Infimum product. Let C be a dagger category, each Hom-set of which
is a complete lattice (having order agreed with the dagger).

We will designate some morphisms as principal and require that principal mor-
phisms are both metacomplete and co-metacomplete. (For a particular example of
the category Rel, all morphisms are considered principal.)

Let H(Q) X be an object for each indexed family X of objects.

Let m be a partial function mapping elements X € domm (which consists of
small indexed families of objects of C) to indexed families H(Q) X — X of principal
morphisms (called projections) for every i € dom X.

We will denote particular morphisms as m:%

i -

8



1. GENERAL PRODUCT IN PARTIALLY ORDERED DAGGER CATEGORY 9

REMARK 1973. In some important examples the function 7 is entire, that is
dom 7 is the set of all small indexed families of objects of C. However there are also
some important examples where it is partial.

DEFINITION 1974. Infimum product [[ F (such that 7 is defined at A\j € n :
Src F; and A\j € n : Dst F}) is defined by the formula

HF — |_| ((ﬂ_;\jEn:DstF ) o F} Oﬂ_)ijn :Src F; )
i€dom F'

This formula can be (over)simplified to:
(L)
HF _ |_| ((W?StOF) o F; O,NSrcoF)

i€dom F'

Aj€En:Src Fy
o Fz o ﬂ__jEn rc F c

Aj€n:Dst F;
G i

REMARK 1975.
Hom (Hgggb Src F, H;g; Dst Fj) are properly defined and have the same sources

and destination (whenever ¢ € dom F' is), thus the meet in the formulas is properly
defined.

REMARK 1976. Thus
F()X(L)Fl _ ((ﬂ_(()DstFo,Dst Fl))TOE)OWésrCFO’SYCFl))I_I((’]T§DSt Fy,Dst Fl))TOFlo’]'('gsrCFO’SrCFl))

that is product is defined by a pure algebraic formula.

¢€Hom(H(Q) Src F; H(Q) DstF) }

Xjen:Dst F; /\]En Src Fj
Vien: @E(r,

PROPOSITION 1977. H(L) F = max{ or

PROOF. By definition of meet on a complete lattice. O

<I>€Hom(H(Q) Src F; H(Q) DGtF) }

XjEn:Dst I X Src Fj
Vien:®C(m, Jenbs 7)foF;om; Jensre

COROLLARY 1978. H(L) F= |_|{

THEOREM 1979. Let m¥ be metamonovalued morphisms. If S €
P (Hom(Ap, Byg) x Hom(A1, By)) for some sets Ag, By, A1, By then

(L)
H{Wg} =[dom § x® []im .
PROOF.
{ axb }
(a,b) e S
|_| ((W(()Dsta’Dst b))T 0ao 7T(()Srca,src b)) n ((ﬂ_(Dsta ,Dst b))]u obo srca srcb
(a,b) € S

Dst a,Dst b Src a,Srcb Dst a,Dst b Srca Srcb)
|—|{<wé )toaon )}mﬂ{@é N obor

a € dom S beimS

(Dst a,Dst b)\ 1 { a } (Srca,Ser)> (Dst a,Dst b)\ ¢ b (Srca,Srcbd)
((WO ) Ol_l a € dom S ° ™o n{m ) ol—l beimsS 1
(( (Dst a,Dst b) (I_l dom S) o ﬂ_C(]Srca ,Src b)) N ((ﬂ_gDst a,Dst b))T o (l_l im S) (Srca Src b))
|_|domS X |_|

O

COROLLARY 1980. (ao X(L) bo) M (a1 X(L) bl) = (ao M al) X(L) (bo [l bl)
COROLLARY 1981. qag x (L) by % a1 x (L) b1 < ag £ ap Nby ¥ by.
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1.2. Infimum product for endomorphisms. Let F is an indexed family of
endomorphisms of C.

I will denote Ob f the object (source and destination) of an endomorphism f.

Let also 7;¥ be a monovalued entirely defined morphism (for each i € dom F).

Then [[" F = ﬂiedomF((ﬂ;‘jen:Oij)T o Fy o m 7SO F5y (if 7 is defined at
Aj €n:ObF;).

Abbreviate m; = m/ " OP I

80 T1" F = Micaom ((mi)' 0 Fi o m).

@
(L) N ‘bEEnd(H‘ nOij)
[ F = max ViEn:<1>;(ﬂ]’iE)ToFiom

Taking into account that m; is a monovalued entirely defined morphism, we get:

ecEnd (J]\2) ob F) }

Osvious 1982. [V F = max{ Ve CoE T

REMARK 1983. The above formula may allow to define the product for non-
dagger categories (but only for endomorphisms). In this writing I don’t introduce
a notation for this, however.

COROLLARY 1984. 7; € C(H(L) F, Fz) for every i € dom F.

1.3. Category of continuous morphisms. Let m; = 73X (for i € dom F') be
entirely defined monovalued morphisms (we suppose it is defined at X).

Let & of an indexed family of morphisms is a morphism; m; o @ f = fi;
®i6n(ﬂ-i © f) = f'

DEFINITION 1985. The category cont(C) is defined as follows:

e Objects are endomorphisms of the category C.

e Morphisms are triples (f, a,b) where a and b are objects and f : Oba —
Ob b is an entirely defined monovalue principal morphism of the category
C such that f € C(a,b) (in other words, foa C bo f).

e Composition of morphisms is defined by the formula (g,b,¢) o (f,a,b) =
(g 0 f7 a, C).

e Identity morphisms are (a, a, 1¢).
It is really a category:

PROOF. We need to prove that: composition of morphisms is a morphism,
composition is associative, and identity morphisms can be canceled on the left and
on the right.

That composition of morphisms is a morphism by properties of generalized
continuity.

That composition is associative is obvious.

That identity morphisms can be canceled on the left and on the right is obvious.

O

REMARK 1986. The “physical” meaning of this category is:
e Objects (endomorphisms of C) are spaces.
e Morphisms are continuous functions between spaces.
e foaC bo f intuitively means that f combined with an infinitely small is
less than infinitely small combined with f (that is f is continuous).

DEFINITION 1987. wfom(c) = (H(L) F, Fi,m).

PROPOSITION 1988. ; are continuous, that is 7°°**(C); are morphisms.
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PROOF. We need to prove 7; € C(H(L) F, FZ> but that was proved above. O

LEMMA 1989. f € Homong(c) (Y, H(L) F) is continuous iff all 7; o f are con-
tinuous.

PROOF.
=. Let f € Homgop(c) (Y, R F) Then foY C (H<L> F) ofimofoY C
;0 (H(L) F) of;mofoY C (H(L) F) om;o f. Thus m; o f is continuous.
<. Let all m; o f be continuous. Then ﬂ'font(c) o f € Homeone(c)(Y, Fy); ﬁfont(c) o
foYCEF, owfom(c) o f. We need to prove Y C ffo (H(L) F) o f that is

YEfTOH((Wi)TOFiOWi)Of

i€n
for what is enough (because f is metamonovalued)
Y E |_|(fJr o (7'('1)-r OF,L‘ o T Of)
€N
what follows from Y C |—|i6n(ff o (m;)t om0 foY) what is obvious.
O

THEOREM 1990. H(L) together with @ is a (partial) product in the category
cont(C).

PROOF. Obvious.
Check http://math.stackexchange.com/questions/102632/
how-to-check-whether-it-is-a-direct-product /1026774102677 O

2. On duality

We will consider duality where both the category C and orders on Mor-sets are

replaced with their dual. T will denote A vl B when two formulas A and B are

dual with this duality.

PROPOSITION 1991. f € C(u,v) <2 #t € C(uf, uh).
dval -t o ft t ot 1 t
PrROOF. f € Clu,v) & fouCvof+—— plofl O flolv™t & f1 e
C(vt, uh). O

f is entirely defined < fTo f J 1 LN fTofClgey & fis injective &
f1 is monovalued.

f is monovalued < fo ff C 1Dt f (ual, foftd Ipst f & f is surjective &
fT is entirely defined.

3. General coproduct in partially ordered dagger category

The below is the dual of the above, proofs are omitted as they are dual.
Let ¢; FiXme: What is +7 are entirely defined monovalued morphisms to an
object Z.

Let ¢; & m; that is ¢; = (m—)T. We have the above equivalent to m; being
monovalued and entirely defined.


http://math.stackexchange.com/questions/102632/how-to-check-whether-it-is-a-direct-product/102677#102677
http://math.stackexchange.com/questions/102632/how-to-check-whether-it-is-a-direct-product/102677#102677
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3.1. Supremum coproduct. Let C be a dagger category, each Hom-set of
which is a complete lattice (having order agreed with the dagger).

We will designate some morphisms as principal and require that principal mor-
phisms are both metacomplete and co-metacomplete. (For a particular example of
the category Rel, all morphisms are considered principal.)

Let H(Q) X be an object for each indexed family X of objects.

Let ¢ be a partial function mapping elements X € dom:¢ (which consists of
small indexed families of objects of C) to indexed families X; — ]_[(Q) X of principal
morphisms (called injections) for every ¢ € dom X.

DEFINITION 1992. Supremum coproduct ]_[(L) F (such that ¢ is defined at A\j €
n: Dst F; and A\j € n: Src F}) is defined by the formula

(L)
HF _ |_| (L?\jen:Src F; o RT o (L?]En:Dst FJ)T)

4
i€dom F'

This formula can be (over)simplified to:

(L)
HF — I_l (LZSrCOF ° FiT ° (L?stoF)T).

i€dom F
REMARK 1993. ijen:src 6 B o (L?jE":DSt Fj)T €
Hom (]_[5231 Src F, ]_[5221 Dst Fj) are properly defined and have the same sources

and destination (whenever ¢ € dom F is), thus the meet in the formulas is properly
defined.

REMARK 1994. Thus
FOH(L)Fl — (L(()SI‘CFo,SrCFl)OFO“'O(LéDSt Fo,DStFl))T)u(bgsrcFo,SrCFl)OFl“'O(LgDSt Foy,Dst Fl))"')

that is coproduct is defined by a pure algebraic formula.

(@
(L) o ecend(J[(2) ob ;)
ProPOSITION 1995. [V F = mm{wen;@@je":s‘“FonF;o(LjiE":DS‘FJ’)f .
PROOF. By definition of meet on a complete lattice. O
(@
g eeend(][2, onr)

COROLLARY 1996. [[V F = l_l{vz'en:quijE”‘S“ FonF:o(L;\jenzDSt (-
THEOREM 1997. Let mX be metainjective morphisms. It § €

Z(Hom(Ayp, By) x Hom(A;, By)) for some sets Ay, By, A1, By then

axp
_ (L) i
U{W}—Udomsx LllmS
COROLLARY 1998. (ag II(E) bo) L (ay I by) = (ag May) TE) (b M by).

COROLLARY 1999. ag H(L) bo = a1 H(L) b1 & ag =ay ANbyg = by.

3.2. Supremum coproduct for endomorphisms. Let F' be an indexed
family of endomorphisms of C.

I will denote Ob f the object (source and destination) of an endomorphism f.

Let also ¢; be a monovalued entirely defined morphism (for each ¢ € dom F).

DerFINITION 2000. [[) F = uiedomF(L;\jG”:Ob Fi o Bl o (9EMOP Y (if 4 i

defined at A\j € n : Ob Fj). (I call it supremum coproduct).
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. Ajen:Ob F;
Abbreviate ¢; = 1}’ 7.

So [[F = I_liedomF(Li °© F’L'T ° (Li)w'
®cEnd (]_[;21 Ob Fy)
ViEn:(bgLiOF:O(MV

[ F = min

Taking into account that ¢; is a monovalued entirely defined morphism, we get:

ocEnd ([ 9 ob Fy
Osvious 2001. [[¥) = min{ (LISe, ov F5) }

vicn:; €C(F] @)

COROLLARY 2002. ¢; € C(Fi, ]_[(L) F) for every i € dom F.

3.3. Category of continuous morphisms. Let ¢; (for i € dom F) be en-
tirely defined monovalued and metacomplete morphisms.

Let @@ of an indexed family of morphisms is a morphism; (@ f) o v; = fi;
D,c,.(fori) = f (a dual of the above).

Let F; € End (]_[(Q) Ob Fj) for all i € n (where n is some index set) (a self-dual

JEN
of the above).
DEFINITION 2003. (J""(¢) — (H(L) F, F;F,LZ).

cont(C)

PROPOSITION 2004. ¢; are continuous, that is ¢, are morphisms.

LEMMA 2005. f € Homegue(c) (]_[(L) F, Y) is continuous

iff all f o 1<"(C) are continuous.

THEOREM 2006. ]_[(L) together with € is a (partial) coproduct in the category
cont(C).

4. Applying this to the theory of funcoids and reloids
4.1. Funcoids.

DEFINITION 2007. Fed def cont FCD.

Let F be a family of endofuncoids.

The cartesian product H(Q) x [1X.

I define ; = 7* € FCD(]] X, X;) as the principal funcoid corresponding to the
i-th projection. (Here 7 is entirely defined.)

The disjoint union H(Q) x 11X.

I define ¢; = 1¥ € FCD(X;,[[ X) as the principal funcoid corresponding to the
i-th canonical injection. (Here ¢ is entirely defined.)

Let @ and @ be defined in the same way as in category Set.

OBVIOUS 2008. m; 0@ f = fi; Q,cn(miof) = [
OBvIOoUs 2009. (D f) o = fi; @jc,(foti) = f.

It is easy to show that 7; is entirely defined monovalued, and ¢; is metacomplete
and co-metacomplete.

Thus we are under conditions for both canonical products and canonical co-
products and thus both H(L) F and ]_[(L) F are defined.
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4.2. Reloids.
DEFINITION 2010. RI1d def cont RLD.

Let F be a family of endoreloids.

The cartesian product H(Q) x [1X.

I define m; = m¥ € RLD([] X, X;) as the principal reloid corresponding to the
i-th projection. (Here 7 is entirely defined.)

The disjoint union H(Q) x ¥ Ix.

I define +; = +X € RLD(X;,[[ X) as the principal reloid corresponding to the
i-th canonical injection. (Here ¢ is entirely defined.)

Let Q) and @ are defined in the same way as in category Set.

OBvious 2011. w0 @ f = fi; Q,cp(mio f) = f.
OBvious 2012. (P f) o = fi; @jc,(f o ti) = f.

It is easy to show that 7; is entirely defined monovalued, and ¢; is metacomplete
and co-metacomplete.

Thus we are under conditions for both canonical products and canonical co-
products and thus both H(L) F and H(L) F are defined.

It is trivial that for uniform spaces infimum product of reloids coincides with
product uniformilty.

5. Initial and terminal objects

Initial object of Fed is the endofuncoid $F¢P®.9) (). Tt is initial because it has
precisely one morphism o (the empty set considered as a function) to any object
Y. o is a morphism because oo FCP@D) § Ty o 0.

PROPOSITION 2013. Terminal objects of Fed are exactly 17 {}xFP 17

{x} =1FCP {(x, %)} where # is an arbitrary point.

PROOF. In order for a function f : X —1FP {(x,%)} be a morphism, it is
required exactly fo X C1FP {(x,%)} o f
foX E (f7lo 7P {0}l foX T (s xFP(f){x})7! foX T

(f~1{*} xFP {4} what true exactly when f is a constant function with the value
*. g

It n = then Z = {#}; [[") 0 = maxFCD(Z, Z) =17 {0} x P 17 {f} =4FCD
{(@.0)}.

FiXme: Initial and terminal objects of Rld.

6. Canonical product and subatomic product

PROPOSITION 2014. PrR-P lg(z) = (m:) for every index i of a cartesian product
Z.

PROOF. If X € F(Z) then (PrfPP|z)x = PPy = M7 (Pr)'x =
[[(mi)up X = (m;) X. O

-1
FCD Dst F FCD Src F'
ProrosITION 2015. H(A) F = |‘|ien <(7‘r (H"'e" )) oFjom, (HiEn ))

K2
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PROOF. a {H(A)F} b & Vi € dmF : PifPq [F] PP o

Vi € domF <(waD(Hi€nD“F))_1> 7] <waD(Hi€nS“F>> &

Vi € domF : a (WFCD(Hi€7lD5tF)) oFiOﬂ_I‘:CD(HienSrcF)‘| b o

(2 7

-1

FCD Dst F FCD Src F
a [ﬂz€n<(7r (H’E” ’ )) oF;om, (H“” )>] b for ultrafilters a and

(3 (3

b. O
COROLLARY 2016. H(L) F= H(A) Fis F is a small indexed family of funcoids.

7. Further plans

Does the formula Hgézl(gl ofi)= H(L) go H(L) f hold?
Coordinate-wise continuity.

8. Cartesian closedness

We are not only to prove (or maybe disprove) that our categories are cartesian
closed, but also to find (if any) explicit formulas for exponential transpose and
evaluation.

"Definition” A category is //cartesian closed// iff:

1°. It has finite products.

2°. For each objects A, B is given an object MOR(A, B) (//exponentiation//)
and a morphism 53}% : MOR(A,B) x A — B.

3°. For each morphism f : Z x A — B there is given a morphism (//expo-
nential transpose//) ~ f : Z — MOR(A, B).

4°. epco(~fxla)=ffor f: A= BxC.

5°. ~(egco(gx1a))=gforg: A— MOR(B,C).

We will also denote f — (—f) the reverse of the bijection f +— (~ f).

Our purpose is to prove (or disprove) that categories Dig, Fed, and Rld are
cartesian closed. Note that they have finite (and even infinite) products is already
proved.

Alternative way to prove: you can prove that the functor — x B is left adjoint
to the exponentiation —2 where the counit is given by the evaluation map.

8.1. Definitions. Categories Dig, Fcd, and Rld are respectively categories
of:

1°. discretely continuous maps between digraphs;
2°. (proximally) continuous maps between endofuncoids;
3°. (uniformly) continuous maps between endoreloids.

"Definition” //Digraph// is an endomorphism of the category Rel.

For a digraph A we denote Ob A the set of vertexes or A and GR A the set of
edges or A.

"Definition” Category Dig of digraphs is the category whose objects are di-
graphs and morphisms are discretely continuous maps between digraphs. That is
morphisms from a digraph p to a digraph v are functions (or more precisely mor-
phisms of Set) f such that fopu C vo f (or equivalently py C f~1ovo f or
equivalently fopo f~! Cv).

"Remark” Category of digraphs is sometimes defined in an other (non equiva-
lent) way, allowing multiple edges between two given vertices.
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8.2. Conjectures.

CONJECTURE 2017. The categories Fcd and Rld are cartesian closed (actually
two conjectures).

http://mathoverflow.net/questions/141615/how-to-prove-that-there-are-no-exponential-object-in-a-categ
suggests to investigate colimits to prove that there are no exponential object.
Our purpose is to prove (or disprove) that categories Dig, Fcd, and Rld are
cartesian closed. Note that they have finite (and even infinite) products is already
proved.
Alternative way to prove: you can prove that the functor — x B is left adjoint
to the exponentiation —2 where the counit is given by the evaluation map.
See http://www.springer.com/us/book/9780387977102 for another way to
prove Cartesian closedness.

8.3. Category Dig is cartesian closed. Category of digraphs is the sim-
plest of our three categories and it is easy to demonstrate that it is cartesian closed.
I demonstrate cartesian closedness of Dig mainly with the purpose to show a pat-
tern similarly to which we may probably demonstrate our two other categories are
cartesian closed.

Let G and H be graphs:

e ObMOR(G, H) = (Ob H)©P¢;
e (f,g) € GRMOR(G,H) & V(v,w) € GRG : (f(v),g9(w)) € GRH for
every f,g € ObMOR(G, H) = (Ob H)°P&;

GR Imor(B,c) = idobMor(B,0) = id(ob H)ov e

Equivalently

(f,g9) € GRMOR(G, H) < V(v,w) € GRG : go{(v,w)} o f~' CGRH

(f,9) € GRMOR(G,H) < go (GRG) o f"' CGRH

(f,9) € GRMOR(G,H) & (f x©) g9y GRG C GRH

The transposition (the isomorphism) is uncurrying.

~ f =Xa € Z>‘y cA: f(a7y) that is (N f)(a)(y) = f(aay)'

(~F)ay) = Fla)()

If f: Ax B— Cthen ~ f: A— MOR(B,C)

"Proposition” Transposition and its inverse are morphisms of Dig.

"Proof” Tt follows from the equivalence ~ f : A — MOR(B,C) < Vz,y :
(zAy = (~ fJa(MOR(B, C))(~ f)y) &

Va,y : Ay = Y(v,w) € B: ((~ flav, (~ flyw) € C) &
Va,y,v,w: (xAy AvBw = ((~ flzv, (~ flyw) € C) <
Vo, y,v,w: ((z,v)(A % B)(y,w) = (f(z,v), fly,w)) e C) & f: Ax B — C.

Evaluation € : MOR(G, H) x G — H is defined by the formula:

Then evaluation is ep,c = —(Imor(B,0))-

So ep,c(p,q) = (—(Imor(s,c))) (P, 0) = (Ivor(s.c)) (P) (@) = p(q)-

”Proposition” Evaluation is a morphism of Dig.

"Proof” Because p,c(p,q) = —(Imor(B,0))-

It remains to prove: * egpco(~ fx14) = ffor f: A —- BxC; * ~
(epco(gx1ly))=gforg: A— MOR(B,C).

"Proof” ep.c(~ f x 1a)(a,p) = epo((~ fla,p) = (~ flap = [f(a,p). So
EB7CO(Nf X 1A) :f

~ (ep,c o (g9 x 14))(p)(a) = (eB,c ° (g x 1a))(p,q) = ep,c(g X 1a)(p,q) =
ep.c(gp,q) = 9(p)(q). So ~ (epco(gx1a)) =g

8.4. By analogy with the proof that Dig is cartesian closed. The most
obvious way for proof attempt that Fecd is cartesian closed is an analogy with the
proof that Dig is cartesian closed.


http://mathoverflow.net/questions/141615/how-to-prove-that-there-are-no-exponential-object-in-a-category
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Consider the long formula above. The proof would arise if we replace x and y in
this formula with filters and operations and relations on set element with operations
and relations on filters.

This proof could be simplified in either of two ways:

e replace z and y with ultrafilters, see [[Proof for Fed using ultrafilters]];
e replace z and y with sets (principal filter), see [[Proof for Fed using sets]].

This is not quite easy however, because we need to calculate uncurrying for
a entirely defined monovalued principal funcoid (what is essentially the same as a
function of a Set-morphisms) taking either ultrafilters or principal filters as argu-
ments. Such (generalized) uncurrying is not quite easy.
To sum what we need to prove:
e Transposition is a morphism.
e Evaluation is a morphism.
e cpco(~fxly)=fforf:A— BxC.
o ~(epco(gx1lay))=gforg: A— MOR(B,C).

8.5. Attempt to describe exponentials in Fcd.

e Exponential object HOM(A, B) is the following endofuncoid:
e — Object ObHOM(A, B) = (Ob B)°P4;

— Graph is GR HOM(A, B) =1FCP {

e Transposition is uncurrying.

.9
f,g€Homset (Ob A,0b B)ATFPgo AotFeD f=1C B }

e Evaluation is €4, gz = <PréA) x) Pr(lA) x.
We need to prove that the above defined are really an exponential and an
evaluation.
Possible ways to prove that Fed is cartesian closed follow:

(A) (A)
NEW IDEA: Prove GRHOM(A, B) =1FCP {W} (what’s about

other kinds of projections?)

8.6. Proof for Fcd using sets. Currying for sets is (f)(X xY) = J{(~
YX)Y (as it’s easy to prove). This simple formula gives hope, but...
It does not work with sets because an analogy for sets of the last equality of

the above mentioned long formula would be:
VX, Y, VW € ZObA: (X xV[AXB*Y xW = (f)(X x V) [C]* (/HY xW)) =

f:AxB—=C

but this implication seems false.

The most obvious way for proof attempt that Fed is cartesian closed is an
analogy with the proof that Dig is cartesian closed.

Use the exponential object, transposition, and evaluation as defined in [[this
page|Is category Fed cartesian closed?]]

8.7. Reducing to the fact that Dig is cartesian closed. It is probably a
simpler way to prove that Fcd is cartesian closed by embedding it into Dig (which
is [[already known to be cartesian closed|Category Dig is cartesian closed]]).

Fcd can be embedded into Dig by the formulas:

e A <A>;
o f= ()
That this really maps a morphism of Fed into a morphism of Dig follows from

the fact that (go f) = (g) o (f).
Obviously this embedding (denote it T') is an injective (both on objects and

morphisms) functor.
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We will define:

_1_Di
d 5&?}% =T 15T,14g,TB9

o ~Fecd f — T—l ~Dig Tf
Due to functoriality and injectivity of T" it is enough to prove that above defined

efed and ~Fed f exist and are morphisms of Fed.

Dig Fed Dig ;
erarp 7 1e4°p because er o rp accepts ordered pairs as the argument and

Tsﬂ‘fg accepts sets as the argument. So this is a dead end. Can the proof idea be
salvaged?

9. Is category Rld cartesian closed?

We may attempt to prove that Rld is cartesian closed by embedding it into
supposedly cartesian closed category Fed by the function p:

(pfle=fox and (pf~L)y=f"loy.

TODO: More to write on this topic.



CHAPTER 3

Equalizers and co-Equalizers in Certain Categories
It is a rough draft. Errors are possible.

1. Equalizers

Categories cont(C) are defined above.
I will denote W the forgetful functor from cont(C) to C.
In the definition of the category cont(C) take values of 1 as principal morphisms.

LEMMA 2018. Let f : X — Y be a morphism of the category cont(C) where C is
a concrete category (so W f =1 ¢ for a Rel-morphism ¢ because f is principal) and
imp =A C ObY. Factor it ¢ = £°PY ou where u : Ob X — A using properties of
Set. Then u is a morphism of cont(C) (that is a continuous function X — 14Y").

PROOF. (EOPY) Lo p= (E0PY)~10og0bY oy

(E9Y) ot = (V) 10 £ Vo 1 us

(EEPY) ot =t u;

XC(utomaYotue XC(1e) toflPYomaY o(E8PY) ot p &
XC (1) 1o o(69Y) Loy 0f9"Y o (690F) lot o X L (1) oY1
0 X C(Wf) oY o Wf what is true by definition of continuity. O

Equational definition of equalizers:
http://nforum.mathforge.org/comments.php?Discussion]D=5328 /

THEOREM 2019. The following is an equalizer of parallel morphisms f,g: A —
B of category cont(C):

e the object X = 2 ngbA}A;

To=gz
e the morphism £°PX:OP4 considered as a morphism X — A.

PROOF. Denote e = £0PX,0b 4,

Let f oz = goz for some morphism z.

Let’s prove e o u = z for some u : Src z — X. Really, as a morphism of Set it
exists and is unique.

Consider z as as a generalized element.

f(z) = g(2). So z € X (that is Dstz € X). Thus z = e o u for some u (by
properties of Set). The generalized element u is a cont(C)-morphism because of
the lemma above. It is unique by properties of Set. O

We can (over)simplify the above theorem by the obvious below:

OBVIOUS 2020. {M} =dom(f N g).

fx=gx
2. Co-equalizers

http://math.stackexchange.com/questions/539717/
how-to-construct-co-equalizers-in-mathbftop
Let ~ be an equivalence relation. Let’s denote 7 its canonical projection.
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DEFINITION 2021. f/ ~=1mo fo 1 n~! for every morphism f.
OBvIOUS 2022. Ob(f/ ~) = (Ob f)/r.
OBVIOUS 2023. f/ ~= (170 7 (@) 4FCD 1) £ for every morphism f.

To define co-equalizers of morphisms f and g let ~ be is the smallest equivalence
relation such that fz = gx.

LEMMA 2024. Let f: X — Y be a morphism of the category cont(C) where C
is a concrete category (so W f =1 ¢ for a Rel-morphism ¢ because f is principal)
such that ¢ respects ~. Factor it ¢ = u o m where u : Ob(X/ ~) — ObY using
properties of Set. Then u is a morphism of cont(C) (that is a continuous function
X/ ~—Y).

PROOF. foXof 'CY;tuotroXotn lotutCY;tueC(tmoXo?
1Y) = C(X/ ~,Y). O

THEOREM 2025. The following is a co-equalizer of parallel morphisms f,g :
A — B of category cont(C):

e the object Y = f/ ~;
e the morphism 7 considered as a morphism B — Y.

PRrROOF. Let z o0 f = z o g for some morphism z.

Let’s prove u o = z for some u : Y — Dst z. Really, as a morphism of Set it
exists and is unique.

Srcz € Y. Thus z = wor for some u (by properties of Set). The function w is
a cont(C)-morphism because of the lemma above. It is unique by properties of Set
(7 obviously respects equivalence classes). O

3. Rest

THEOREM 2026. The categories cont(C) (for example in Fed and Rld) are
complete.

PROOF. They have products and equalizers. [l

THEOREM 2027. The categories cont(C) (for example in Fcd and Rld) are
co-complete.

PROOF. They have co-products and co-equalizers. O

DEFINITION 2028. I call morphisms f and g of a category with embeddings
equivalent (f ~ g) when there exist a morphism p such that Srcp C Src f, Srcp C
SI"Cg, DStp C Dst f7 DStP C DStg and LSrc f,Dst fP = f and LSrcg,DstgP = g-

PrROBLEM 2029. Find under which conditions:

1°. Equivalence of morphisms is an equivalence relation.
2°. Equivalence of morphisms is a congruence for our category.



CHAPTER 4

Categories of filters

In [1] two categories, whose objects are related with filters on sets, are defined
and researched.

Accordingly [1] infinite product is defined just in the first (denoted .# there)
of these two categories. So we will for now consider the first category. (Usefulness
of the second category for our research is questionable.)

Let f: A — B be a function, A be a filter on A.

PROPOSITION 2030. {ﬁ%} is a filter.

Proor. That it is an upper set is obvious.
Let Yo, 1 € { 26555} Then (f/71)"Yo € Aand (f71)"V1 € A. We have

Y Yony) ={Yn(fHrned

since f is monovalued. Thus Yy NY; € {ﬁ%}. O

@ .

THEOREM 2031. {q’fﬁiwﬁ;‘t} is
equal to the filter generated by the filter base {(f)*)" A, for every filter A.

PROOF. Denote B = {ﬁ%}, C= <<f>*>*A

Let Y € C. Then Y = (f)"A where A € A. Then (f~')"(f)*A 2 A and so
<f_1>*<f>*A € A. This proves (f)"A € B, that is Y € B.

Let now Y € B. Then <f>*<f’1>*Y CY. Since <f’1>*Y € A, we have that Y
is a supset of some set of the form (f)"A4,so0 Y € C. O

COROLLARY 2032. up(f)A = {ﬁ%}'

DEFINITION 2033. The category of filtered sets Filt is the category defined as
follows:

1°. Objects are pairs (A, .A) where A is a (small) set and A is a filter on A.
2°. Morphisms from (A4, .A) to (B,B) are functions f : A — B such that
(AL B.

3°. Identities are identity functions.

To verify that it is a category is straightforward.

It is the same category as % in [1], as follows from an above proposition.

We will prove that starred reloidal product is a categorical product in this
category. First we will prove the special case that binary reloidal product is a
categorical product in this category.

THEOREM 2034. xR'P (together with projections Pry and Pry) is a categorical
product in Filt.

PROOF. Let our objects be A, B.
Denote p the left projection from Base(A) x Base(B) to Base(A).

21
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We need to check that p is a Filt-morphism that is p(A xRP B) C A what is
obvious.

Similarly for the right projection gq.

It remains to check the universal property: Let C be a filter and f : C — A,
g : C — B. We need to prove that there are a unique v : C — A xR® B such that
f=powuand g =qou. Denote h(z) = (f(z),9(2)).

h is the unique function Base(C) — Base(A) x Base(B) such that f = poh and
g = qoh, so it remains to check that h is a morphism of Filt that is (h)C C AxRPB,
what obviously follows from (f)C C A and (g)C C B. O

THEOREM 2035. J[*-°*

in Filt.

together with projections Pry, is a categorical product

PROOF. Consider an indexed family A of objects.
Denote pj, the k-th projection from [, g0 4 Base(A;).

We need to check that py s a Filt-morphism that is py (HRLD* A) C A; what
is obvious.

It remains to check the universal property: Let C be a filter and f : C — Ay.
We need to prove that there are a unique u : C — HRLD* A such that fr = pg o u.
Denote h(z) = i € dom A : f;z.

h is the unique function Base(C) — [[;cqom 4 Base(A;) such that fr = pyoh,
so0 it remains to check that h is a morphism of Filt that is (h)C T []°"°* A. Tt

follows from
RLD

Pr(h)C = [ |(Pri)" ()" upC =[|(Pron)* upC =[|(fi)* upC = (£:)C E A;.
O



CHAPTER 5

Power of filters

1. Germs of functions

DEFINITION 2036. Functions f, g € Rel(Ob X, B) are of the same X-germ for
a filter object X iff there exists X € up X such that f|x = g|x.

ProPOSITION 2037. Being of the same germ is an equivalence relation.

PROOF.
Reflexivity. Take arbitrary X € up X.
Symmetry. Obvious.
Transitivity. Let f|x = g|x and gly = hly. Then f|xny = h|lxny-

DEFINITION 2038. A germ is an equivalence class of being the same germ.
OBvVIOUS 2039. Every germ is a filter on Set.

THEOREM 2040. Let A, B be sets.
The following are mutually inverse bijections between monovalued reloids f :
A — B with dom f = X and X-germs S of functions A — B for X € # A:
1°. f > upSet f;
2°. S slyifsesS.

The second bijection can also be written as S +— (|_|RI'D S) |x or if card B # 1 as
S = |_|R|‘D S.

REMARK 2041. s|y is always defined because S is nonempty (it is an equiva-
lence class).

PROOF. First prove that upSet f is an X-germ. Really, F € upSet f < F J
fe Fly=fe3X cupX : Flx I f; thus F,G € upS®t f = 3IX € up X :
Flx 3 fAFY €uwpX :Gly Jf=3IX € upd : Flxay I fATY € upX :
Glxry 2f=3Z€wX: (Fl; JfAGl; 2f)=3Zcuwpd: (FNG)|; 1 f
and FeupSt fAIX cupX : Flx =G|x = FI fAF|lx=Glx=Glx I f=>
G € upSet f. We have proved that upSet f is an equivalence class of the suitable
equivalence relation, that is upSet f is an X-germ.

That [T%° S is a monovalued reloid is obvious. Also im[]

Now prove that our correspondences are mutually inverse.

Let fo : A — B be a monovalued reloid and dom f = X. Let S = up®et f,
and f; = s|y for an s € S. We need to prove f; = fo. Really, fi = F|x for an
F € upSet fo; thus f1 = fo.

Let Sy be an X-germ of functions A — B. Let f = s|x for an s € Sy and
S1 = upSet f. We need to prove S; = Sy. Really,

S = Set(| )_ F € Set _ F € Set _ F € Set _g
Lo FOslx) \3XeuwX:FlxJs|x) \3XeuwX:Flx=slx) O

RLD . .
S = X is obvious.

<|_|RLD S) lx = ﬂsRlégs\X = s|x for every choice of s € S.

23
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We can assume that B # () because otherwise the theorem is obvious. Thus we
can assume card B > 1.

If X = X then obviously S has just one element F' and im |_|RLD S=imF =
X = X. Otherwise for every X € up X there are elements F', G of S such that
dom(F'MG)C X (using card B > 1).

By properties of generalized filter bases X x T 1 |_|RLDS & dFG € S
XxTIJFNG& X JX. Thus im[f° S5 = &, O

2. Power of filters
Let’s define Y for filters X, Y-
First define Y for a set Y

. f € RLD(Ob X, Y)
~ |dom f = X A f is monovalued |

Now V¥ =[50, VY.

[1] defines an isomorphic to this way to define “exponentiation” of filters.

TODO: Check P! = y; ZXx™°V o (zX)Y, ZXIY o zX (RID zV. 32 o
Y xRD y. Y0 =~ 1. PN ~ H:g\, Y. More formulas at https://en.wikipedia.org/
wiki/Cartesian_ closed_category.

Andreas Blass says in a private email that it is not cartesian closed: “Unfor-
tunately, the two categories of filters in my paper are not cartesian closed. This is
mentioned in a parenthetical comment near the bottom of page 141. The operation
of cartesian product with the cofinite filter on the natural numbers has no right
adjoint, because it does not preserve infinite coproducts.” about [1].

But it is probably a braided closed monoidal category?

See [1] for more categorical properties of filters.


https://en.wikipedia.org/wiki/Cartesian_closed_category
https://en.wikipedia.org/wiki/Cartesian_closed_category

CHAPTER 6

Matters related to tensor product

These consideration on (possibly infinite) indexed families of join-semilattices
is based on [7] (for the finite case).

Let 2 be an indexed family of join-semilattices with least elements. Let T also
be a join-semilattice.

Let F'(X) mean free join-semilattice for a set X.

DEFINITION 2042. SepJoin([]2,T) is the set of maps from [[A to T, pre-
serving joins in every argument i € dom2|.

OBvIOUS 2043. The set of free join-semilattices F'(X) is order-isomorphic to
the set of subsets X of a “universal” set O.

Let i : [J2 — F(J]2) be the universal embedding.
Let ~ be defined as the smallest equivalence relation on F(J]2) that for every
ke domQ(, Le HiE(dOIIlQ{)\{k‘} QLL
17 i(L U{(k, g Uh)}) ~i(LU{(k,9)}) Li(LU{(k,h)});
2. 1~ i(LU{(h, L)}
F.x~yNd ~y =zl ~yUy forall x,y,2',y € F(J[A).

OBvIOUS 2044. Some function A : X — Y induces a well defined map v :
X/E — Y on equivalence classes, if E C F where x F y < hx = hy.

LEMMA 2045. The set of join-homomorphisms ¢ : F(][[2()/ ~— T is isomor-
phic to the set of maps ¢ : [[21 — T preserving finite joins in separate arguments.

PROOF. The quotient map ¢ : F([[A) = F(][2)/ ~ which takes an element

x to its equivalence class [x] map is well defined because
x~yAd ~y =l ~yUy.

The map ¢ preserves join. F([]2()/ ~ is associative, commutative, and idempotent

since it is so on F(J]2) and thus is a join-semilattice.

Let join-preserving map ¢ : F([[2)/ ~— T. It is easy to show that ¥ o g o
preserves joins in separate arguments.

Let now ¢ : [[20 — T preserves joins in separate arguments. There is a unique
join-preserving map ¢ : F(J]2) — T such that ¢ o7 = ¢. We must show that
this induces a well-defined join-preserving map ¢ : F([[2()/ ~— T such that
Y(q(x)) = ¢(x) for all z € F(J[A) (clearly at most one function v can satisfy
this equation since ¢ is surjective). This will show that ¢ bijectively correspond
to ¢ and thus bijectively correspond to ¢. (This will finish the proof as that this
bijection is monotone is obvious.)

Using the “obvious” above, it’s enough (taking into account that ~ is the
minimal equivalence relation subject to the above formulas) to prove that:

1°. @(i(LU{(k,gUh)})) = G(i(L U{(k,9)}) Li(LU{(k.h)}));
2°. ¢(L) = o(i(L U {(k, L)}));

3°. d(x) = d(y) A da') = d(y') = d(zLa’) = dlyUy)

25
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The first easily follows from ¢ o = ¢ and the fact that ¢ preserves binary joins.
The second easily follows from ¢ o i = ¢ and that ¢ preserves L.
The third follows from the fact that ¢ preserves joins. O

COROLLARY 2046. The poset of prestaroids preStrd(2() is isomorphic to an ideal
(on a join-semilattice), provided that 2l is an indexed family of join-semilattices.

PROOF. preStrd(2) = SepJoin(2,2) = F([[A)/ ~— 22 J(F([[A)/ ~). O

COROLLARY 2047. preStrd is a complete lattice.
PRrOOF. Corollary 515. O
COROLLARY 2048. preStrd is a filtered filtrator.
PRrROOF. Theorem 531. (|

FiXme: Try to prove that preStrd is atomic and moreover atomistic (under
certain conditions). Other properties?



CHAPTER 7

Mappings between endofuncoids and topological
spaces

Oreder topologies reversely to set-theoretic inclusion. That is for topologies ¢
and s we set t C s & t D s. (Intuitively: The less is the topology, the lesser are its
open sets.)

Let’s study mappings between topological spaces and endofuncoids.

DEFINITION 2049. Let t be a topology.
o F
1°. F*t = UweObt({x} < [T {£5 >?
2. (F)E = ﬂ{ Det. }

ProrosiTioN 2050. Let t be a topology.

1°. F*t is complete, reflexive, transitive funcoid.
2°. F,t is co-complete, reflexive, transitive funcoid.
3°. F* and F, are injections.

4°. Fit = (F*t)~ L

PROOF. By theorem 785. U

DEFINITION 2051. Let f be an endofuncoid.

- Ec20bf
= {Ver:<f>{x};E}'

ProPOSITION 2052. T'f is a topology.

PROOF. Union of open sets is open. S CTf =VE € SVzx € E: (f)a T FE =
VeelUS: (flz=CTUS
Intersection of two open sets is open. Let X, Y € Tf. Then Vo € X : (fla C X
and Ve € Y : (f)zr CY. Soif x € X NY then (f)2a C X and (f)z C Y,
so (flzCTXNY. SoXNY eTf.
Ob f is an open set. Obvious.
U

OBvIOUS 2053. Tf = {&55’%}'

In some reason when starting this research I assumed that the following funcoid
(for every endofuncoid f) is a Kuratowski closure:

1 U CoCompl f LI (CoCompl f)?LI....
It is not true:

ExXAMPLE 2054. There exists such a co-complete endofuncoid f that 1U f U
f2U... is not transitive that is

QUfuffu..)o(lufuffu..)£10fufru...

27
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PrOOF. Take f = clog where g is the principal funcoid which maps every real
—1—lal. 1+|a|}
2 2 |-

)

number a into the closed interval [
Take X = [—%;4]. (f")*X = [-1+ k1 — 55 ).

We have (1 I_IQf’IfIfQI_I...)*X =] - 1;1];
AQuUfuffu.. )*QUfufiu.. X =[-1;1].

Thus follows our inequality. O

That F* and F, are functors (if we map morphisms to themselves except of
changing the objects) follows from conjecture 1180.

THEOREM 2055. T (if we map morphisms to themselves except of changing the
objects) is a functor.

PROOF. Based on https://math.stackexchange.com/a /2792239 /4876

Let f:p — vthatis fou C vo f. We need to prove f : Ty — Tv that is
EeTv= (fY)*EeTp.

Suppose E € Tv that is (v)*E C E. We will prove (u)*(f~1)*E C (f~1)*E.

FiXme: Can we use arbitrary filters rather than atoms?

Really, let atom y C (u)*(f~1)*E. Then there exists atom z C (f~!)*E such
that = [u]* y.

z [fou* (fly and thus @ [vo f]* (f)y, so (fz []* (fy. But (f)z C B, so
(f)yC ()" EC B, that is (4)*(f\)*E C E. 0

PROPOSITION 2056. f € C(u,v) = f € C(u™,v™) for every endofuncoids p
and v and positive natural number n. FiXme: Move this proposition to the book.

PROOF. fouCvof; fopopuCvofou; fou? Tv2of; foud Crvlof... O

PRroproOSITION 2057. For every endofuncoid u:
1°. BT 3 Compl
2°. F*T'y 3 Compl p;
3°. F,Tu 3 CoCompl y;
4°. F*Tp 3 CoCompl y;

PRrROOF. We will prove only the first two as the rest are dual.

BT E = N3} = N omrsSoss) 2
|_|{ DeZ 0b u,<(CC(Z>rrnnI;>lll:A>>**%ED/\D2E} 2 (Compl y1)* E.

FTuey = 7{&R} = WV {adbams) 2
N7 { seormep s § 2 (Compl )" {a). O

LEMMA 2058. For every endofuncoid pu:

1°. F,Tp 10U Compl p U (Compl )2 U . ;
2°. F*Tp C 1 U CoCompl i L (CoCompl p2)? U . ..

PRrROOF. We will prove only the first as the second is dual.

(11U Compl p LI (Compl )2 U...)*E = EJ{Compl p)* E LU {(Compl u))*E L. ..

Take D = E U (Compl p)*E U ((Compl p)?)*E U ... We have (Compl p)*D
(Compl p)*E U {(Compl p)2)*E U... E D. So

ﬂ{ (Comp?;g?Dogb;/\DgE} C D C (1UComplpl (Compl )2 U...)*E. O

1M1

THEOREM 2059. If we restrict the functor 7" only to complete endofuncoids
(= complete endoreloids), then T is a left adjoint of both F, and F*.
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PRrROOF. We will prove only for F, as the other is dual.
We will disprove f € C(Tu,s) & f € C(u, Fis) what is equivalent (because Fj
is full and faithful) to

f € C(FTu,F,s) < f € C(u, Fis);

FTuC floFsofeulC fTloFsof.

FTpuC f'oFsof=puC f~l'oF,so f because F,Tu 3 p.

If uC floF,s0fthen u" C f~to(F,s8)"of = f~loF,sof. Also obviously
1C f~Yo F,so f. Thus

1UpUp?U...CfloFsof
and so 1UCompl pU(Compl 1)?U... C f~loFsof. So F,TuC f~toF,soF. O
FiXme: F and T are also a Galois connection, isn’t it?

ExAMPLE 2060. T is a not left adjoint of both F, and F*, with bijection which
preserves the “function” part of the morphism.

PRrROOF. We will disprove only from F, as the other is dual.
We will disprove f € C(Tu,s) < f € C(u, Fis) what is equivalent (because F,
is full and faithful) to
f € C(FTu,F.s) < f € C(u, Fis);
FTpuC floFsofeuC fTloFsof.
This equivalence does not hold: Take s the discrete space on R, f = idg, and
(u)*X = X for finite sets X and (u)*X = T for infinite X. O



CHAPTER 8

Funcoids as closed sets

Idea [6] by TODD TRIMBLE.

FiXme: https://ncatlab.org/toddtrimble/published /topogeny and https://
math.stackexchange.com/q /2681502 /4876

FiXme: What about the infinite products?

THEOREM 2061. The set of staroids #ZX; x---x £ X,, — 2 is order isomorphic
to co-frame of closed subsets of topological product X7 x --- x 8X,,.

PROOF. ZX; X -+-x £X,, — 2 can be order-embedded to the frame of ideals
J(PXy % x PX,) what is dual (check!) to the frame of ideals of the distributive
lattice X, ®---® #X,,. This by 7?7 is the coproduct ), #X; in the category of
boolean algebras. By Stone duality it is isomorphic to the topology of it spectrum
BX1 X -+ x BX,. (]

Elements of X7 x --- x X, are closed subsets. So every n-staroid one-to-one
corresponds to a closed set of 5X; X --- X BX,,.

Note that 8X; x -+ x X, is a compact Hausdorfl space (as a product of
compact Hausdorff spaces).

It seems that there is an easy way to describe the above order embedding in
both directions:

(x1,...,2n)
fH{xlw 7z

.oy Xy € atoms” xq XFCD ... xFCD g Ef}’

X|—>|_| py xFCD .. FCD
peX '

FiXme: Try to prove that composition of funcoids is isomorphic to composition
of relations SA x BB.

30


https://ncatlab.org/toddtrimble/published/topogeny
https://math.stackexchange.com/q/2681502/4876
https://math.stackexchange.com/q/2681502/4876

CHAPTER 9

Categories related with funcoids

I consider some categories related with pointfree funcoids.

1. Draft status

This is a rough partial draft.

2. Topic of this article

In this article are considered some categories related to pointfree funcoids.

3. Category of continuous morphisms
I will denote Ob f the object (source and destination) of an endomorphism f.

DEFINITION 2062. Let C is a partially ordered category. The category cont(C')
(which T call the category of continuous morphism over C) is:
e Objects are endomorphisms of category C.
e Morphisms are triples (f, a,b) where a and b are objects and f : Oba —
Ob b is a morphism of the category C such that foa C bo f.
e Composition of morphisms is defined by the formula (g,b,¢) o (f,a,b) =
(g o f7 a’ c)

e Identity morphisms are (a,a,19).
It is really a category:

PROOF. We need to prove that: composition of morphisms is a morphism,
composition is associative, and identity morphisms can be canceled on the left and
on the right.

That composition of morphisms is a morphism follows from these implications:

foaCbofAgobCeog=gofoaCgobofTcogolf.

That composition is associative is obvious.
That identity morphisms can be canceled on the left and on the right is obvious.
O

REMARK 2063. The “physical” meaning of this category is:
e Objects (endomorphisms of C) are spaces.
e Morphisms are continuous functions between spaces.
e foaC bo f intuitively means that f combined with an infinitely small is
less than infinitely small combined with f (that is f is continuous).

REMARK 2064. Every Hom(2l,B) of Pos is partially ordered by the formula
a<bsVred:alx) <bx). So cont(Pos) is defined.

DEFINITION 2065. I call a Pos-morphism monovalued when it maps atoms to
atoms or least element.

DEFINITION 2066. I call a Pos-morphism entirely defined when its value is
non-least on every non-least element.
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OBvIOUSs 2067. A morphism is both monovalued and entirely defined iff it
maps atoms into atoms.

FiXme: Show how it relates with dagger categories.

DEFINITION 2068. mePos is the subcategory of Pos with only monovalued
and entirely defined morphisms.

OBvIous 2069. This is a well defined category.

DEFINITION 2070. mefpFCD is the subcategory of fpFCD with only monoval-
ued and entirely defined morphisms.

REMARK 2071. In the two above definitions different definitions of monoval-
uedness and entire definedness from different articles.

4. Definition of the categories

DEFINITION 2072. A (pointfree) endo-funcoid is a (pointfree) funcoid with the
same source and destination (an endomorphism of the category of (pointfree) fun-
coids). T will denote Ob f the object of an endomorphism f.

OBvIous 2073. The category of continuous pointfree funcoids cont(fpFCD) is:

e Objects are small pointfree endo-funcoids.

e Morphisms from an object a to an object b are triples (f, a,b) where f is a
pointfree funcoid from Oba to Obb such that f is a continuous morphism
from a to b (that is foa C bo f, or equivalently a T f~1obo f, or
equivalently foao f~1 C f).

e Composition is the composition of pointfree funcoids.

e Identity for an object a is (IFSP , a, a).

5. Isomorphisms

THEOREM 2074. If f is an isomorphism a — b of the category cont(fpFCD),
then:
1°. foa=bof;
2°. a=f"lobof;
3°. foaof~l=b.

PRrOOF. Note that f is monovalued and entirely defined.

1. We have foa C bof and f~'ob C aof~!. Consequently f tofoa T f~lobof;
aC f~lobofiaof ' C f~lobofof tiaof ' C f~tob. Similarly bo f C foa.
So foa=bof.

2 and 3. Follow from the definition of isomorphism. O

Isomorphisms are meant to preserve structure of objects. I will show that
(under certain conditions) isomorphisms of cont(fpFCD) really preserve structure
of objects.

First we will consider an isomorphism between objects a and b which are fun-
coids (not the general case of pointfree funcoids). In this case a map which preserves
structure of objects is a bijection. It is really a bijection as the following theorem
says:

THEOREM 2075. If f is an isomorphism of the category of funcoids then f
is a discrete funcoid (so, it is essentially a bijection).  FiXme: Split it into two
propositions: about completeness and co-completeness.
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PROOF. (f)* AN (f)*((Src f)\ A) = 0P**/ because f is monovalued.

() AU (F)" (Ste )\ A) = 157,

Therefore (f)*A is a principal filter (theorem 49 in [4]). So f is co-complete.
That f is complete follows from symmetry. O

For wider class of pointfree funcoids the concept of bijection does not make
sense. Instead we would want a structure preserving map to be order isomorphism.

Actually, for mapping between A and B where A and B are some sets
(including the above considered case of funcoids from A to B) bijection and order
isomorphism are essentially the same:

PRrROPOSITION 2076. Bijections F' between sets A and B bijectively correspond
to order isomorphisms f between ZA and B by the formula f = (F).

PROOF. Let F is a bijection. Then X C Y = (F)X C (F)Y and (F~1)(F)X =
X for every sets X,Y € ZA. Thus f = (F) is an order isomorphism.

Let now f is an order isomorphism between A and #B. Then f({z}) is
a singleton for every x € A. Take F(z) to the unique y such that f({z}) = {y}.
Obviously f is a bijection and f = (F). O

For arbitrary pointfree funcoids isomorphisms do not necessarily preserve struc-
ture. It holds only for increasing pointfree funcoids:

DEFINITION 2077. I call a pointfree funcoid f increasing iff (f) and (f~!) are
monotone functions.

ProPOSITION 2078. If f is an increasing isomorphism of the category of point-
free funcoids then (f) is an order isomorphism.

PrOOF. We have: (f) o (f~1) = (fo [™!) = (idg”) = idy and (/") o (f) =
(f~To f) = (id5P) = idy. Thus (f) is a bijection.
(f) is increasing and bijective. 0

REMARK 2079. Non-increasing isomorphisms of the category of pointfree fun-
coids are against sound mind, they don’t preserve the structure of the source, that
is for them (f) or (f~!) are not order isomorphisms.

OBvIOUS 2080. Isomorphisms of cont(Pos) and cont(mePos) are order iso-
morphisms.

6. Direct products

FiXme: Now this section is a complete mess. Clean it up.

Consider the category contFed which is the full subcategory cont(mePos)
restricted to objects which are essentially increasing pointfree funcoids.

Let f1 : Y — X; and f; : Y — X5 are morphisms of contFed.

The product object is X1 x(©) Xy (cross composition product of funcoids used).
It is easy to see that X; x(©) X, is an object of contFed that is an endo-funcoid.

The morphism f; x(P) f, : ¥ — X; x(©) X, is defined by the formula (f; x ()
f2)y = fiy xFP foy.

f1 xP) f5 is monovalued and entirely defined because so are f; and fo.

(f1 x (D2) fo)y = U{le x FCD Y | Ye atomsmy}.

FiXme: Is (f1 xP?) £,) a pointfree funcoid?
To prove that it is really a morphism we need to show

(fr xP) fo) oY E (X1 XD Xp) 0 (fy xP) fy)
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that is (for every y)
(f1 xP) f2)Yy C (X1 x D Xo)(f1 xP) fo)y.
Really, (f1 xP) fo)Yy = f1Yy xFP foYy;
(X1 <D X)) (f1 xP) fo)y = (X1 x( D Xo)(fry xFP foy) = X1 fry xFP Xs foy;
but it is easy to show f1Yy x P .Yy C X fry xTP X, foy.
77
I define 77
FiXme: Prove that it is a direct product in contFcd.



CHAPTER 10

Product of funcoids over a filter

The following definition is inspired by the usual definition of Tychonoff product
of topological spaces.

DEFINITION 2081. Let f be an indexed family of funcoids. Let F be a filter
on dom f.

7] RLD RLD
a |[[f|be3NeFvieN:Pra[f] Prb
for atomic reloids a and b.

REMARK 2082. We are especially interested in the special case when F is the
cofinite filter. In this case a [H[]:] f} b is defined by the condition that Pri-Pa [f;]

PrlRLD for an infinite number of indexes .
f] bea [H(A) f] b.

PROPOSITION 2084. —(X [f] V) implies ~(X [f] Y) for some X € up X, Y €
up V.

ProoOF. Suppose —(X [f] V). Then Y = (f)X. Thus by separability of core
for filters Y =< (f)X for some Y € up), that is ~(X [f] V). Apply this result

OBvIOUS 2083. a [H[deom”]

twice. 1
LEMMA 2085.
VX e H upa;,Y € H up b;3dzx € H atoms T X,y € H atoms 1 Y;IN € FVj € N : z; [f;] y;
i€D ieD ieD ieD

implies IN € FVi € N : a; [fi] bi.

PROOF. Suppose for the contrary —(a; [fi] b;) for all i € N where N € F (i.e.
for an infinite number of indexes if F is the cofinite filter). Then (lemma above)
there are X; € upa; and Y; € upb; such that —~(X; [f;]* Vi) for ¢ € N. Thus
—(x; [fi] y;) for i € N, contrary to the condition. O

ProposITION 2086. The funcoid Hm f exists.

PROOF. We need to prove that
(A2)
VX eupa,Y € upbIz € atoms tRP X,y € atoms tRP Y : z H fly

implies a [H[F] f} b.
Equivalently transforming it:
VX cupa,Y € upb3z € atoms tRP Xy € atoms 1R YV
3N € FVie N : PritP o [f,] PrRPy;
VX €upa,Y € upbIz € [[;cqon ; atoms RD X,y € [Ticaom s atoms 1RO y;
aN € FVi € N : z; [fi] vi;

35
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VX e Hupai,Y € Hupbiﬂx € HatomsTXi,ye HatomsTYiElNe}'Vj €N :xz; [fi]y;

€D €D €D €D
where D = dom f.
Thus by the lemma 3N € FVi € N : a; [f;] b, that is a {H[ﬂ f} b, 0

FiXme: TODO: when Pr; HE?D a; = a;?

1. More on product of reloids

DEFINITION 2087. ngtiomf f= Hgéc)iomf(FCD)f for an indexed family f of
reloids.

PROPOSITION 2088.
) RLD RLD
a H flbeViedomf: fi # Prax®P Prb.
icdom f ! !
PROOF. f; # PriPa xFO PPy o (FCD)fi O PrfPa xFCP PrfP) o
a [(FCD)f;] b. O

ExaMPLE 2089. The funcoid p described by the formula (for atomic reloids a
and b)

RLD &L RLD
apbsViedomf: f; J Prax Pro
T K3
does not exist (in general), even if we restrict to 2-indexed families only.

PROOF. For the case if f = [v,w] is a 2-indexed family of reloids, the formula
which we need to disprove takes the form:

apb< v ddoma xRD dom b A w Jdima xRLD im b,

Take v = w = 1R®®! on an infinite set. Suppose for the contrary p exists and is a
funcoid. Then

VX €upa,Y € upbdz € atoms T X,y catoms Y :xpy=apb.

For a counter-example take a = b to be a nontrivial ultrafilter. Then for every
X €upa, Y € upb take x = y to be singletons on X NY. We have x p y, but not
apb. O



CHAPTER 11

Compact funcoids

Compact funcoids are defined. Attempted to prove that under certain con-
ditions the reloid corresponding to a compact funcoid is the neighborhood of the
diagonal of the product funcoid.

This is a rough partial draft. The proofs are with errors.

FiXme: The below examples also show that subatomic product does not coincide
with Tychonoff product.

1. The rest
DEFINITION 2090. A funcoid f is directly compact iff

VFeF: ((f)F #L= Cor(f)F#1L).

OBvIiOUs 2091. A funcoid f is directly compact iff Va € atomsdom f :

Cor(f)a # L.
OBvIOUS 2092. A reflexive funcoid f is directly compact iff
VFeF:(F#L= Cor(f)F #1).
DEFINITION 2093. A funcoid f is reversely compact iff f =1 is directly compact.

DEFINITION 2094. A funcoid is compact iff it is both directly compact and
reversely compact.

PROPOSITION 2095. J[¥-P a =tRLP [
ily a of principal filters.

sedom o (TREP) ta; for every indexed fam-

PROOF. Because [] (1RP)~1a; € up [[*Pa.

i€doma
O

LEMMA 2096. [[e0  Cora; = Cor [[FPa.

Proor. Cor[["°a = [{tRPTIA | Acupa} —1RLD
{ITA | Acupa}=tRPN{[]4 | Ac Z2][4,Vicdoma: A; €upa;} =P
HIINK: | KeZZ][W,Viedoma: K; € Pupa;} —4RLD
N{IItRP)~* Cora; | i€ doma} =tRP H?égoma Cor a;.

O

COROLLARY 2097. H?ég(COComplfi)Xi = <CoComp1H(A) f> [M*° & for
every n-indexed families f of funcoids and X of filters on the same set (with
Src f; = Base(X;) for every i € n).

37
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PROOF.
RLD
H (CoCompl fi)X; =
1EN
RLD
H COI'<f1>XZ =
1€EN
RLD
Cor [TtF0%: = (%
1EN
RLD RLD
Cor H (H X) =
€N
(A) \ RLD
Cor<H f> H X =
RLD
<CoC0mle f> H X.
(*) You should verify the special case when &; = LS for some i. O

THEOREM 2098. Let f be an indexed family of funcoids.  FiXme: Reverse
theorem (for non-least funcoids).
1°. ] f is directly compact if every f; is directly compact.
2°. T] f is reversely compact if every f; is reversely compact.
3°. T[] f is compact if every f; is compact.
PROOF. It is enough to prove only the first statement.
Let each f; is directly compact.
o (A) _ 1qRLD \ pLRLD .
Let ([]f)a # L. Then ([[f)a = (I f)a = [Licqom s{fi) Pri ~ a. Thus
every <fi>PrfLDa # 1. Consequently by compactness Cor(fi>Pr?LDa #+ 1
[icaom ¢ Cor{fi) Pri® a # L; Cor [Ticaom ¢ (i) Pri™ a # L Cor([] f)a # L.
So [] f is directly compact. O

ProrosiTIiON 2099. The following expressions are pairwise equal:
1°. <f 5 (A) f>*1RLD;
0 (xDpp .
2°. I—l{ pEatoms 1'3')-D }
0 (Nazx®O(f)a
3°. l—l{ xéatomsg }’
PROOF.
1°<2°. Theorem 872.
90330, I_I{ (xMhp } — |_|{ (f) dom px P f) imp} — I_I{ (NaxTP(f)z }

pEatoms 1RLD pEatoms 1RLD r€atoms?

0

PROPOSITION 2100. Let g be a reloid and f = (FCD)g and f = f o f~!. Then
(f xA) f)=1RD T g,

PROOF. <f x (4) f>*1RLD %ATRLD Y <:>TRLD 1RLD [fX(A) f]TRLD Y @TFCD
1RLD [f % (©) f]TFCD Y & fO /]\FCD 1RLD 4 f71 %TFCD Y & f o ffl XTFCD Y &
FAFP Y & mAFP Yy £ 1« (RLD)w(fM 1FP Y) # L & (RLD)inf M
(RLD)i 1FP Y # 1 <= (RLD)uf M (RLD)oye 1FC Y # L < (RLD);, f11 1RO Y ;A
L < (RLD)y(FCD)gN R Y £ | « grRP Y £ | < g #RD v,
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PROPOSITION 2101. Let g be a reloid and f = (FCD)g and f = f o f~!. Then
<f Xin f>*1RLD 3 g.

PROOF. {f x™ f)" 1R = ((RLD)jy f o(©) (RLD);nf) 1RP = (RLD);nf 0 1RP o
(RLD)inf_l = (RLD)inf © (RLD)inf_l = ( )m f f ) (RLD)inf
(RLD)in(FCD)g 3 g. O

LeMMA 2102, Cor(f x) f)*g C 1RP if (FCD)g = f for a Ty-separable reloid

1.1. Propositions from [2] which do not hold for our products. In
this subsection I present counter-examples against modified propositions from [2]
in which I replace Tychonoff product with our subatomic or cross-inner products.

TODO: Consider as a counter-example the non-transitive compact funcoid

(z,y)
z,ye(0:1],|la—yl<3 [~
EXAMPLE 2103. (1Rel x(4) 1Rel>*1REI - 1Rel,

PROOF. <1Re1 5« (A) 1Rel>*1Rel _ Uantoms 1Re1<]_Re1 « (A) 1Re1>*x _
|_|w€at0ms 1Rel (<1Rel>* dOIIlJ? xRLD <1Rel>* im JI) =
leEatoms 1Rel (dOIIl[L‘ xREP im :L') = leEatoms.?(x x RLD .T) - 1Rel, O

Statement 2 on page 172 of [2] does not survive modification:

ExAMPLE 2104.

1°. There is a funcoid f and V € upf such that V o M o V~! ¢
up( f x A f>*M.

20, (f x@) £Y*M 33 go tRL Mo g~! for some reloid g, binary relation M and
the funcoid f = (FCD)g.

PROOF.

1°. Take f = M =V = 1Rel and use the example above.
2°. Take f = g = M = 1®°! and use the example above.

COROLLARY 2105. (f x™) £)y*M C (f x(©) fy*M
COROLLARY 2106. Vo V=1 € up(f x) f)*1RP; fo f=1 3 (f x(A) f)*IRLD,
ProoF. 77 O

REMARK 2107. I attempted to generalize the below theorem more than the
standard general topology theorem about correspondence of compact and uniform
spaces, but haven’t really succeeded much, as it appears to be needed that the reloid
in question is reflexive, symmetric, and transitive, that is just a uniform space as
in the standard general topology.

Does the reverse inequality hold, that is g 3 (f x4 f)"1R® and/or g 3
(f xin f>*1RLD (for compact f = (FCD)g)?
THEOREM 2108. g C <}‘ x f>leLD for compact f = (FCD)g. (We have

already proved thls in an easier way, and not only for compact funcoids.)

Suppose there is U € up(f x! ]‘> IRLP such that U ¢ up g.
Then { VAU } = g\ U would be a proper filter.

Veupg
Thus by reflexivity (f x4 f)*(g\ (’)
By compactness of f x(4) f Cor(f x ‘) /) (g\U)
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Suppose 1 {(z,2)} T (f xA) £Y*(g\ U); then g\ U # (f~1 x =N {(z,2)};
UC (7' x@ I {(z,2)} T (f~1 xA =1 1R what is impossible.

Thus there exist # # y such that {(z,3)} T Cor(f x) f)*(g\ U). Thus
{(z,9)} T (f xD f)rg.

Thus by the lemma {(z,y)} C 1R'® what is impossible. So U € up g.

We have up(f x(4) f)*1RD Cup g; (f x(A) f)*1RP 3 ¢,

COROLLARY 2109. Let f is a Ty-separable (the same as T5 for symmetric transi-
tive) compact funcoid and g is a uniform space (reflexive, symmetric, and transitive
endoreloid) such that (FCD)g = f. Then g = (f x4 f)*1RLD,

An (incomplete) attempt to prove one more theorem follows:

THEOREM 2110. Let x4 and v be uniform spaces, (FCD)u be a compact funcoid.
Then a map f is a continuous map from (FCD)u to (FCD)v iff f is a (uniformly)
continuous map from p to v.

PROOF. FiXme: errors in this proof.

http://math.stackexchange.com/questions/665202 /bourbaki-
on-the-fact-that-continuous-function-on-a-compact-is-uniformly-
continuo/6709567iemail=1&noredirect=1#670956

We have p = ((FCD)u x (FCD)y) tRD 1RLD

f € C;((FCD)p, (FCD)v). Then

FxW f e C((FCD) (e x™ 1), (FCD) (v x4 1))

(f xA f) o (FCD) (i x™) ) C (FCD) (v x M v) o (f x4 f)
For every V € up(v x4 v) we have (g=1)V € ((FCD)(u x“) u)){y} for some

Y-
(g71)V € ({(FCD)p x4 (FCD) ) $REC 1R = up o
(g HV EV
We need to prove f € C(u,v) that is Vp € upr3q € upp : (f)g C p. But this
follows from the above. O

FiXme: A space is compact if and only if it is both, complete and totally
bounded.

http://math.stackexchange.com/questions/1101995/
non-symmetric-version-of-compact-totally-bounded-complete
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CHAPTER 12

Pointfree funcoids as a generalization of frames

I define an injection from the set of frames to the set of pointfree endo-funcoids.
This article is a rough partial draft of a future longer writing.

1. Definitions

1.1. Pointfree funcoid induced by a co-frame. Let £ is a co-frame.

We will define pointfree funcoid 1 £.

Let B(£) is a boolean lattice whose co-subframe £ is. (That this mapping exists
follows from [3], page 53.) There may be probably more than one such mapping,
but we just choose one B arbitrarily.

Define cl(A) =[{X € £ | X 2 A}

Here [] can be taken on either £ or B(£) as they are the same.

OBVIOUS 2111. ¢l € £8(9),

cdAUB)=[{Xef | XJAUB}=[}{Xel | XJAXIB} =
[HXiuXy | XiJAXoOBI=[H{X1 | XiJAYU[{X: | XoOB}=
clAuUclB.

cl0 = 0 is obvious.

Hence we are under conditions of the theorem 14.26 in my book.

So there exists a unique pointfree endo-funcoid f} £ € FCD(F(B(£)),TF(B(L)))

such that
T(B(L))

Gex = [ (c)upFEBEE) x
for every filter X € F(B(L)).

1.2. Co-frame induced by a pointfree funcoid. The co-frame | f for
some pointfree endo-funcoids f will be defined to be the reverse of {}. See below for
exact meaning of being reverse.

Let restore the co-frame £ from the pointfree funcoid { £.

Let poset || f for every pointfree funcoid f is defined by the formula:

Lf={Xez©Obf) | ()X =X}
REMARK 2112. It seems that | is not a monovalued function from pFCD to
Ob(Frm).
1.3. Isomorphism of co-frames through pointfree funcoids.

REMARK 2113. B(B(L)) = Z(F(B(L))) (theorem 4.137 in [5]).

THEOREM 2114. £ —|{t £ (where £ ranges all small frames) is an order iso-
morphism.

PROOF. Let A’ €}t £. Then there exists A € B(£) such that A’ =15(%) A,

(f)A" =1B(2) ] A.

(f)A" = A’ that is 15() c1 A = A’ =1B(%) A, So cl A = A and thus A € £.

Let now A € £. Then take A’ =18(%) A, We have (f)A’ = cl A =1B(%) A = A’
So A" el £.
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We have proved that it is a bijection.
Because A and A’ are related by the equation A’ =18(£) A it is obvious that
this is an order embedding. (|

2. Postface

Pointfree funcoids are a massive generalization of locales and frames: They
don’t only require the lattice of filters to be boolean but these can be even not
lattices of filters at all but just arbitrary posets. I think a new era in pointfree
topology starts.

Much work is yet needed to relate different properties of frames and locales
with corresponding properties of pointfree funcoids.



CHAPTER 13
Singularities

Very rough draft.

1. Singularities funcoids: some special cases

We attempt to prove that up z is closed regarding finite intersections.

For consideration of this, let’s consider two special cases (first of which is a
specialization of the second).

Let 1 = v be the natural proximity on real numbers R.

Let A is the entourage filter of zero.

1. 2= A xFP A,

2. z =vo (1FP f)|a for an arbitrary function f: R — R.

(1) is [[also formulated in elementary terms|http://math.stackexchange.com/questions/568513 /is-
a-set-closed-under-finite-intersections-about-filters]] (without using funcoids).

These two above conjectures are shown to be false by a counter-example in
[[this blog post|http://portonmath.wordpress.com/2013/12/18/a-negative-result-
on-a-conjecture/|]. It is a discouraging result as it seems from it the plain funcoids
can’t be used for the multilevel theory of singularities.

2. Using plain funcoids

This way if we succeed is the best way to create metasingular numbers because,
it (if we succeed) involves just funcoids not some fancy generalization of funcoids.

Approximate definition of "singularity level": //Singularity level// is a transi-
tive, Th-separable endofuncoid.

Now define the funcoid v;+; = SLA(v;):

Ob(v;41) is defined as the set of all generalized limits (having fixed u, v, and
G).

X Vi1 Y ©3ze|JObwWK eupzdz e UX,ye JY 1 2,y C K.

The trouble is to prove that the funcoid v;; exists (is really a funcoid).

(X [vit1]* 0) and (0 [v;41]* V) are obvious. We need to prove

ITuJ [l/l'+1]* Y& I [l/i+1]* YVvJ [I/iJrl]* Y

and
X [Vi+1]* IuJ&s X [Vi+1]* IvX [Vi+1]* J.
Let’s attempt to prove the first of the above equations (the second is dual).
ITUJ[SLAW)]*Y &
Jze|JObWwWK cupzidze JIUUJ,ye Y : 2,y C K &
Jze JObWK cupz: (IxeJIUYJ:2CKATFyelJY :yCK) &
Jze JObWK eupziz e JIUUJ: 2 C K A
Jze|JObWwWK eupzdye JY :yC K &
29
Jze|JObrv: (VK cupziz eyl : 2 C KV
VK cupzidzeJJ: 2 T K)ANJz € | JObWK cupzdye JY :yC K &
(3z€e UObWK €upziz e JI:2a T KV
JzeUObwWK cupzdz e JJ iz E K)ATz € JObWK €upzIy e JY 1y C
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K&

(Fz e JObWK cupziz e JI: 2 C K ATz € JObWK €upzIy e JY :y C
K)v

(3z e JObWwWK €upzidz e |JJ:a T K ATz €| JObWK €upzdye JY :y C
K) &

(FzeJObr: (VK €upziz e JI:2 T KAVK eupzdye JY :yC K))V
(FzeJObrv: (VK €upziz e JJ : 2 C KAVK €upzdye Y :yC K)) <
(FzeJObr: (VK cupz: (BzeJI:2CKAFyeUY :yC K)))V

Jze JObWK cupz: (IreJJ: 2 CKAFyeJY :yCK) &

T'[SLA(W)|* Y Vv J [SLAW)]* Y.

To finish the proof we need to fulfill 7?7 in the above formula. For this it’s
enough to prove

VK cupzidze YJIUYUJ : 2 C K =
VK eupzdzeJI:2CKVVK eupziz e | JJ : 2 C K.

If z =1 Z is a principal funcoid, then

VK eupzze JIUYJ: 2 C K =
JreYlIuyJ 2 Cz=>
JeUl:zCzvIzeJJ:zC2z=>
VK eupzdzeJI:2C KVVK eupziz e | JJ : 2 C K.

Following the idea of [[the proof in this math.stackexchange.com
question|http://math.stackexchange.com/questions/562908 /an-implication-
involving-filters#562974]] it is easy to show that our implication is true if
up z is closed regarding finite meets. See [[this page|Singularities funcoids: some
special cases]] for attempts to set it true. The question is whether our statement
holds for non-principal funcoids. Or is there a counterexampe?

3. Singularities funcoids: special cases proof attempts

To prove that GR(A xFP A) is closed under finite intersections, it’s enough to
prove that for every f € GR(A xTP A) there is a positive € such that Vo €] —¢;¢l:
fx e A.

Really, under this assumption:

For g € GR(A xFP A) exists ¢ > 0 such that Vo €] — (;([: gz € A. Let n =
min{e, (}. SoVz €]—n;n[: ((fHz € AN{g)x € A) and so Vx €] —n;n: (fNg)z € A
that is Vo €]—n;n[: (1FP (fng))*{z} 3 A and consequently fNg € GR(AxFPA).
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TODO: not yet written
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