On Todd Trimble's notes on "topogeny"

BY VICTOR PORTON

Web: http://www.mathematics21.org

This short article is written as a response on Todd Trimble's notes:

http://ncatlab.org/toddtrimble/published/topogeny

In this my article I am going to reprise these Todd's theorems which are new for me, converted into terminology and notation of my book [1] and of

http://www.mathematics21.org/binaries/rewrite-plan.pdf

Now this article is a partial draft. I am going to integrate materials of this article into my book.

1 Misc

The following theorem is a strenghtening suggested by Todd of my theorem:

Theorem 1. $\prod^{\mathfrak{F}} S = \bigcup \{\uparrow (K_0 \sqcap^3 \dots \sqcap^3 K_n) \mid K_i \in \bigcup S \text{ where } i = 0, \dots, n \text{ for } n \in \mathbb{N}\}$ for every nonempty set S of filters on a meet-semilattice. [TODO: Strengthen my theorems requiring distributivity of lattice with this result which does not require it even to be a lattice.]

Proof. It follows from the fact that

$$\prod^{\mathfrak{F}} S = \prod^{\mathfrak{F}} \left\{ K_0 \sqcap^3 \dots \sqcap^3 K_n \mid K_i \in \bigcup S \text{ where } i = 0, \dots, n \text{ for } n \in \mathbb{N} \right\}$$

and that $\{K_0 \sqcap^3 ... \sqcap^3 K_n \mid K_i \in \bigcup S \text{ where } i = 0, ..., n \text{ for } n \in \mathbb{N}\}$ is a filter base.

Definition 2. A complete lattice is *co-compact* iff $\prod S = 0$ for a set S of elements of this lattice implies that there is its finite subset $T \subseteq S$ such that $\prod T = 0$. [TODO: Remove the requirement to have least.]

Proposition 3. The poset of filters on a meet-semilattice \mathfrak{Z} with least element is co-compact.

Proof. If $0 \in \prod^{\mathfrak{F}} S$ then there are $K_i \in \bigcup S$ such that $0 \in \uparrow (K_0 \sqcap^3 \dots \sqcap^3 K_n)$ that is $K_0 \sqcap^3 \dots \sqcap^3 K_n = 0$ from which easily follows $\mathcal{F}_0 \sqcap^{\mathfrak{F}} \dots \sqcap^{\mathfrak{F}} \mathcal{F}_n = 0$ for some $\mathcal{F}_i \in S$.

Proposition 4. $\mathcal{X}[f] \sqcap S \Leftrightarrow \exists \mathcal{Y} \in S : \mathcal{X}[f] \mathcal{Y}$ if S is a generalized filter base on Dst f. [TODO: Pointfree funcoids.]

Proof. $\mathcal{X}[f] \prod S \Leftrightarrow \prod S \sqcap \langle f \rangle \mathcal{X} \neq 0 \Leftrightarrow \prod \langle \langle f \rangle \mathcal{X} \sqcap \rangle^* S \neq 0 \Leftrightarrow$ (by properties of generalized filter bases) $\Leftrightarrow \exists \mathcal{Y} \in \langle \langle f \rangle \mathcal{X} \sqcap \rangle^* S: \mathcal{Y} \neq 0 \Leftrightarrow \exists \mathcal{Y} \in S: \langle f \rangle \mathcal{X} \sqcap \mathcal{Y} \neq 0 \Leftrightarrow \exists \mathcal{Y} \in S: \mathcal{X}[f] \mathcal{Y}.$

The following theorem was easy to prove, but I would not discovered it without Todd's help:

Theorem 5. A function $\varphi: \mathfrak{F}(A) \to \mathfrak{F}(B)$ preserves finite joins and filtered meets iff there exists a function f such that $\langle f \rangle = \varphi$. [TODO: Define filtered meets. Say about empty join 0.]

Proof. Backward implication is easy.

Let $\psi = \varphi|_{\mathscr{P}A}$. Then ψ preserves bottom element and binary joins. Thus there exists a function f such that $\langle f \rangle^* = \psi$.

It remains to prove that $\langle f \rangle = \varphi$. Really, $\langle f \rangle \mathcal{X} = \prod \langle \langle f \rangle^* \rangle^* \mathcal{X} = \prod \langle \psi \rangle^* \mathcal{X} = \prod \langle \varphi \rangle^* \mathcal{X} = \varphi \prod \mathcal{X} = \varphi \mathcal{X}$ for every $\mathcal{X} \in \mathfrak{F}(A)$.

Corollary 6. Functions f from A to B bijectively correspond by the formula $\langle f \rangle = \varphi$ to functions $\varphi: \mathfrak{F}(A) \to \mathfrak{F}(B)$ preserving finite joins and filtered meets.

2 Representing funcoids as binary relations

Definition 7. The binary relation $\xi^{\circledast} \in \mathscr{P}(\mathfrak{F}(\operatorname{Src} \xi) \times \mathfrak{F}(\operatorname{Dst} \xi))$ for a funcoid ξ is defined by the formula $\mathcal{A}\xi^{\circledast}\mathcal{B} \Leftrightarrow \mathcal{B} \sqsupseteq \langle \xi \rangle \mathcal{A}$.

Definition 8. The binary relation $\xi^* \in \mathscr{P}(\mathscr{P}\operatorname{Src} \xi \times \mathscr{P}\operatorname{Dst} \xi)$ for a funcoid ξ is defined by the formula

$$A\,\xi^*B \Leftrightarrow B \sqsupseteq \langle \xi \rangle A \Leftrightarrow B \in \mathrm{up}\,\langle \xi \rangle A.$$

Proposition 9. Funcoid ξ can be restored from

- 1. the value of ξ^{\circledast} ;
- 2. the value of ξ^* .

Proof.

- 1. The value of $\langle \xi \rangle$ can be restored from ξ^{\circledast} .
- 2. The value of $\langle \xi \rangle^*$ can be restored from ξ^* .

Theorem 10. Let ν and ξ be composable funcoids. Then:

- 1. $\xi^{\circledast} \circ \nu^{\circledast} = (\xi \circ \nu)^{\circledast};$
- 2. $\xi^* \circ \nu^* = (\xi \circ \nu)^*$.

Proof.

- 1. $\mathcal{A}[\xi^{\circledast} \circ \nu^{\circledast}]\mathcal{C} \Leftrightarrow \exists \mathcal{B}: (\mathcal{A}\nu^{\circledast}\mathcal{B}\wedge\mathcal{B}\xi^{\circledast}\mathcal{C}) \Leftrightarrow \exists \mathcal{B} \in \mathfrak{F}(\mathrm{Dst}\,\nu): (\mathcal{B} \sqsupseteq \langle \nu \rangle \mathcal{A} \wedge \mathcal{C} \sqsupseteq \langle \xi \rangle \mathcal{B}) \Leftrightarrow \mathcal{C} \sqsupseteq \langle \xi \rangle \langle \nu \rangle \mathcal{A} \Leftrightarrow \mathcal{C} \sqsupseteq \langle \xi \circ \nu \rangle \mathcal{A} \Leftrightarrow \mathcal{A}[(\xi \circ \nu)^{\circledast}]\mathcal{C}.$
- 2. $A [\xi^* \circ \nu^*] C \Leftrightarrow \exists B: (A \nu^* B \land B \xi^* C) \Leftrightarrow \exists B: (B \in up \langle \nu \rangle A \land C \in up \langle \xi \rangle B) \Leftrightarrow \exists B \in up \langle \nu \rangle A: C \in up \langle \xi \rangle B.$

 $A\left[(\xi \circ \nu)^*\right] C \Leftrightarrow C \in \mathrm{up}\,\langle \xi \circ \nu \rangle B \Leftrightarrow C \in \mathrm{up}\,\langle \xi \rangle \langle \nu \rangle B.$

It remains to prove

$$\exists B \in \mathrm{up} \, \langle \nu \rangle A : C \in \mathrm{up} \, \langle \xi \rangle B \Leftrightarrow C \in \mathrm{up} \, \langle \xi \rangle \langle \nu \rangle A.$$

 $\exists B \in \mathrm{up} \, \langle \nu \rangle A : C \in \mathrm{up} \, \langle \xi \rangle B \Rightarrow C \in \mathrm{up} \, \langle \xi \rangle \langle \nu \rangle A \text{ is obvious.}$

Let $C \in \text{up } \langle \xi \rangle \langle \nu \rangle A$. Then $C \in \text{up } \prod \langle \langle \xi \rangle \rangle^* \text{ up } \langle \nu \rangle A$; so by properties of generalized filter bases, $\exists P \in \langle \langle \xi \rangle \rangle^* \text{ up } \langle \nu \rangle A$: $C \in \text{up } P$; $\exists B \in \text{up } \langle \nu \rangle A$: $C \in \text{up } \langle \xi \rangle B$.

Remark 11. The above theorem is interesting by the fact that composition of funcoids is represented as relational composition of binary relations.

Bibliography

[1] Victor Porton. Algebraic General Topology. Volume 1. 2014.