
Rewrite plan for my research monograph
by Victor Porton

July 31, 2015

This is my plan to rewrite my draft research monograph �Algebraic General Topology. Volume
1�.

Say that the book intended mainly to represent the current status of my research.
Add thanks to Todd Trimble and Andreas Blass, Robert Martin Solovay.
Shall I denote sets like x2A

P (x)
instead of fx2AjP (x)g?

Remove multiple labels of the same theorem.
Notations for meets and joins for partially ordered categories.

1 Immediate actions

What I am going to do next:

1. Replace hardcoded item references with LATEX cross-references.

2. Rewrite with arbitrary primary �ltrators rather than �lters. (Instead F say �A is base of a
primary �ltrator�.)

3. Join theorems into implication tuples. (Move theorems back not forward! Otherwise a
dependent theorem may occur before it.)

4. Generalize theorems using the formula of meet of �lters for distrubutive lattices for meet-
semilattices.

2 Implications tuples

In the old version of my book there are multiple situations where there are both theorems of the
form B)C and A)C where the A)C is proved using that A)B and B)C. It is accompanied
with verbal explanation, that in these theoremsC is the most important component of the theorems
and B)C is a boring generalization of the �main� theorem A)C.

I decided to rewrite every occurence of this case as single theorem A)B) C with multiple
implications. (There may be more than two implications, in general it is a P1) :::)Pn implica-
tion.)

To describe such implications verbally, I de�ne implications tuples.

De�nition 1. An implications tuple is a tuple (P1; :::; Pn) such that P1) :::)Pn.

Obvious 2. (P1; :::; Pn) is an implications tuple i� Pi)Pj for every i< j (where i; j 2f1; :::; ng).

The following is an example of a theorem using an implication tuple:

Example 3. The following is an implications tuple:

1. A;

2. B;

3. C.

This example means just that A)B)C.
I prefer here a verbal description instead of symbolic implications A)B)C, because A, B,

C may be long English phrases and they may not �t into the formula layout.
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The main (intuitive) idea of the theorem is expressed by the implication P1 ) Pn, the rest
implications (P2) Pn, P3) Pn, ...) are purely technical, as they express generalizations of the
main idea.

For uniformity theorems in the section about �lters and �ltrators start with the sameP1: �(A;Z)
is a powerset �ltrator.�

3 Theory of �lters

Explicitly de�ne order and lattice operations for ideals, free stars, and mixers.
For �ltrators, �lters, funcoids, and reloids write lattice operations without explicit posets.
(About free stars and similar things) say that presence of least element is the same as presence

of the entire poset are equivalent if there is the least element.
I have �discovered� that there are four sets (including the set of �lters itself) isomorphic to the

set of �lters on any poset.
See http://www.mathematics21.org/binaries/dual-�lters.pdf
As there are several isomorphic sets, it makes sense to describe it more generally than the

special case of the set of �lters.
We shall di�erentiate between stA= hduali�:upA=:hduali�upA and @A. There is also the

isomorphism with boolean lattices; how to denote it?
To describe this I rede�ne primary �ltrator (earlier de�ned as a �ltrator (F;Z) where F is the

set of �lters on a poset Z) in an other (non-equivalent) way.

De�nition 4. A primary �ltrator is such a �ltrator (A;Z) that A is isomorphic to the set of �lters
on the poset Z.

De�nition 5. A primary �ltrator over a poset Z is a primary �ltrator of the form (A;Z).

Theorem 6. For every poset Z there exists a primary �ltrator over Z.

Proof. See [1]. �

What I called �complete free stars� could be better called principal free stars . The same is true
for ideals and mixers. I should write explicit characterizations of principality for all four kinds
of ��lter objects�.

Proposition 7. All �lters on a �nite poset are principal.

Get an elementary proof from http://math.stackexchange.com/questions/1206777/an-elemen-
tary-proof-about-�lters (also elementary.tm)

http://math.stackexchange.com/questions/462270/are-all-atoms-of-the-lattice-of-�lters-prin-
cipal-�lters

I've conjectured that �lters on every meet-semilattice are co-brouwerian. It is not so! (take a
non-distribuitive �nite lattice) So distributivity is necessary.

Proposition 8. @
(U) is the set of in�nite subsets of U .

Proposition 9. Cor a=Cor0 a= a for every element a of the core of a �ltrator.

4 2-staroids

De�nition 10. 2-staroid is a binary relation � between two posets such that fY 2B j 9X 2 A:
X �Y g and fX 2A j 9Y 2B:X �Y g are free stars. [TODO: Say that 2-staroids are a special case
of staroids.]
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5 Staroids and multifuncoids

(val f)iL and hf iiL coincide.
Change notation [f ] ! [f ]�, [�f ]�![f ] (for staroids).
I assumed that upgrading a staroid is a staroid without proof. Fill this hole. (De�nition 17.69

for an example.) This is addressed in theorem 17.83.
Because the set of free stars is identi�ed with the set of �lters, the set of staroids (of a given

form) can be identi�ed with the set of multifuncoids on primary �ltrators (Ai;Zi). Can all staroids
and all multifuncoids be identi�ed?

This allows to thoroughly revise the theory of staroids and multifuncoids.
The last chapter of my book (�Identity staroids�) contains errors. I am going to rewrite it after

switching to this new notation.
[TODO: Generalize �Funcoids are �lters� for staroids (call it hyperfuncoids).]

Theorem 11. h�f ika=
d
A2upa
F hf ikA for every multifuncoid f of the form A where k2arity f

and Ak is a poset of �lter objects on a boolean lattice and a is an (arity f) n fkg family of �lters.
[TODO: Say exactly which family of �lters is meant.]

Proof. X �/ h� f ik a , a [ f(k; X )g 2 GR [�f ],up(a [ f(k; X )g) � GR [f ],8A 2 up a;
X 2 up X : A [ f(k; X)g 2 GR [f ],8A 2 up a; X 2 up X : X �/ hf ik A , (because it is
separable),8A2upa:X �/ hf ikA, (by properties of generalized �lter bases and the fact that [f ]
is an upper set),X �/

d
A2upa
F hf ikA.

So h�f ik a=
d
A2up a
F hf ikA because �lters on boolean lattice are separable, �

Example 12. There is such anchored relation f that �"f is not a completary staroid. [TODO:
Remove the conjecture about this.] [TODO: This also proves existence of non completary staroids
(but not for powersets).]

Proof. (based on an Andreas Blass's proof)
Take f the set of functions x:N!N where x0 an arbitrary natural number and xi=

�
0 if n6 x0
1 if n>x0

for i=1; 2; 3; :::.
Let L0(0)=L1(0)=
(N ), L0(i)= "f0g and L1(i)= "f1g for i > 0.
Let X 2up(L0tL1) that is X 2upL0\upL1.
X0 contains all but �nitely many elements of N .
For i > 0 we have f0; 1g�X .
Evidently,

Q
X contains an element of f .

Now consider any �xed c 2 f0; 1gN . There is at most one k 2 N such that the sequence
x= Jk; c(1); c(2); :::K (i.e. c with c(0) replaced by k) is in f . Let Q=N n fkg if there is such a k
and Q=N otherwise.

Take Yi=
�
Q if i=0
fc(i)g if i > 0

for i=1; 2; 3; :::. We have Y 2up(�i2N :Lc(i)(i)).
But evidently

Q
Y does not contain an element of f . �

Example 13. There exists such an (in�nite) set N and N -ary relation f that P 2�f but there
are no indexed family a2

Q
i2N atomsP i of atomic �lters such that a2GR�f that is 8A2upa:

f �/
Q

A.

Proof. Take L0, L1 and f from the proof of example 12. Take P =L0tL1. If a2
Q

i2N atomsP i
then there exists c2f0; 1gN such that aivLc(i)(i) (because Lc(i)(i)=/ 0). Then from that example
it follows that (�i2N :Lc(i)(i))2/ GR�f and thus a2/ GR�f . �

Example 14. There is such an anchored relation F that for some k 2 domF

h�"F i�kL=/
G

a2
Q
i2(domF )nfkgatomsLi

F

h�"F i�k a:

Staroids and multifuncoids 3



Proof. Take P 2GRF from the previous counter-example. We have

8a2
Y

i2domF

atomsP i: a2/ GRP :

Take k=1.
Let L=Pj(domF )nfkg. Then a2/ GR�"F and thus ak�h�"F i�k aj(domF )nfkg.

Consequently Pk� h�"F i�k aj(domF )nfkg and thus Pk�
F
a2

Q
i2(domF )nfkgatomsLi

F h�"F i�k a
because Pk is principal.

But Pk�/ h�"F i�kL. Thus follows h�"F i�kL=/
F
a2

Q
i2(domF )nfkgatomsLi

F h�"F i�k a. �

cross-composition-funcoids.tm
Multifuncoid is a function � distributive over join of every single argument? (It seem that no).

6 Typed sets

Use typed sets instead of sets.

De�nition 15. Typed set is a pair (U ; A) of a set U and its subset A. But we should go more
general: We can de�ne typed element as a pair (A; a) where A is a poset and a 2 A. Note that
cartesian product can be de�ned for the special case if it is a powerset.

Remark 16. Typed sets is an awkward formalization of type theory sets in ZFC (U is meant to
express the type of the set). This book could be better written using type theory instead of ZFC,
but I want my book to be understandable for everyone knowing ZFC.

De�nition 17. P(U ;A)= f(U ;X) j X 2PAg.

For typed sets de�ne order, binary cartesian product (into the category Rel).
De�ne typed elements?
TA= f(A;X) j X 2PAg= fAg�PA
TA= f(A; a) j a2Ag= fAg�A

Consider typed sets denoted ?TA and >TA. (It is consistent with ?FA and >𝔉A.)
hf i� and [f ]� should be de�ned for typed sets, not sets.
We shall consider a primary �ltrator (FA;TA) for every set A to de�ne funcoids and reloids.
Notwithstanding the above, funcoids and reloids are de�ned between sets, not typed sets.

7 Other

Generalization of down-aligned (and up-aligned): A �ltrator (A;Z) is down-closed if 8a2A9b2Z:
bv a.

Funcoids can be alternatively de�ned as: Y �/ hf i�X,X�/ hf¡1i�Y where hf i�:A!F(B) and
hf¡1i�:B!F(A).

For a binary relation f replace hf i with hf i� for clarity of notation.
0 ! ?, 1 ! >.
up(A;Z) ! upA.
De�ne

F
X2S F (X) =

F
fF (X) j X 2Sg (with index of the operator symbol).

Proposition 18.34 - de�ne what is X .
Use explicit pFCD to denote pointfree funcoids.
I overcomplicated the de�nition of image for pointfree funcoids. It should be just hf i> (because

it is used exclusively this way). Is there any single reason to de�ne it in this general complicated
way? it seems there is none. Also prove im f =max hhf ii�Src f .

Theorem 18. For a diagram to be commutative, it's enough if each simple cycle commutes. See
https://en.wikipedia.org/wiki/Cycle_%28graph_theory%29 for a de�nition of simple cycles.
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8 Other new theorems

funcoids-are-�lters.tm
funcoids-are-frame.tm

Theorem 19. The set of funcoids is with separable core.

Proof. Because �lters on distributive lattices are with separable core. �

Theorem 20. The set of funcoids is with co-separable core. [TODO: For pointfree funcoids?]

Proof. Let f ; g 2FCD(A;B) and f t g=1. Then for every X 2PA we have

hf i�X t hgi�X =1,Cor hf i�X tCor hgi�X =1,hCoCompl f i�X t hCoCompl gi�X =1:

Thus hCoCompl f tCoCompl gi�X =1;

f t g=1)CoCompl f tCoCompl g=1: (1)

Applying the dual of the formulas (1) to the formula (1) we get:

f t g=1)ComplCoCompl f tComplCoCompl g=1

that is f t g= 1)Cor f tCor g= 1. So FCD(A;B) is with co-separable core. [TODO: Say that
the �ltrator of complete funcoids is also with co-separable core.] �

Proposition 21. ComplFCD(A;B) and ComplRLD(A;B) are co-brouwerian lattices.

Draw a triangural diagram of correspondence of ComplFCD(A;B) and ComplRLD(A;B) and
indexed families of �lters.

Proposition 22. Every semi�ltered �ltrator is �ltered. [TODO: The reverse implication is
already proved.] [TODO: See also http://math.stackexchange.com/questions/1198368/a-question-
on-order-theory-an-ordered-set-and-its-subset]

Proof. a=
dA up a is equivalent to a is a greatest lower bound of up a. That is the implication

that b is lower bound of up a implies aw b.
b is lower bound of up a implies up b� up a. So as it is semi�ltered aw b. �

8.1 Hyperfuncoids
Let A is an indexed family of sets.

Products are
Q

A for A2
Q

A.
Hyperfuncoids are �lters F¡ on the lattice ¡ of all �nite unions of products.

Problem 23. Is
dFCD a bijection from hyperfuncoids F¡ to:

1. prestaroids on A;

2. staroids on A;

3. completary staroids on A?

If yes, is up¡ de�ning the inverse bijection?
If not, characterize the image of the function

dFCD de�ned on F¡.

8.2 Relationships between funcoids and reloids

Lemma 24. If a, b, c are �lters on powersets and b=/ 0, then

GRLD
fG�F j F 2 atomsRLD(a�RLD b); G2 atomsRLD(b�RLD c)g= a�RLD c:
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Proof. a�RLDc=(b�RLD c)� (a�RLD b)= (corollary 7.18)=
FRLD fG�F j F 2atomsRLD(a�RLD b);

G2 atomsRLD(b�RLD c)g. �

Theorem 25. (RLD)in(g � f) = (RLD)in g � (RLD)in f for every composable funcoids f and g.
[TODO: remove the conjecture as it is now proved.]

Proof. (RLD)in g � (RLD)in f = (corollary 7.18)=
FRLD fG � F j F 2 atomsRLD (RLD)in f ;

G2 atomsRLD (RLD)in gg
Let F be an atom of the poset RLD(Src f ;Dst f).
F 2 atomsRLD (RLD)in f ) dom F �RLD im F �/ atomsRLD (RLD)in f ) (because (RLD)in f

is a funcoidal reloid))dom F �RLD im F v atomsRLD (RLD)in f but dom F �RLD im F v
atomsRLD (RLD)in f)F 2 atomsRLD (RLD)in f is obvious.

So F 2 atomsRLD (RLD)in f , dom F �RLD im F v (RLD)in f ) (FCD)(dom F �RLD im F ) v
(FCD)(RLD)in f,domF �FCD imF v f .

But dom F �FCD im F v f ) (RLD)in(dom F �FCD im F ) v (RLD)in f , dom F �RLD im F v
(RLD)in f .

So F 2 atomsRLD (RLD)in f,domF �FCD imF v f .
dom F �RLD im G =

FRLD fG0 � F 0 j F 0 2 atomsRLD(dom F �RLDim F ); G0 2
atomsRLD(imF �RLD imG)gv

FRLD �
G0�F 0 j F 02atomsRLD(SrcF ;DstF );G02atomsRLD(SrcG;DstG);

F 0 v (RLD)in f ; G0 v (RLD)in g
	
=

FRLD fG0 � F 0 j F 0 2 atomsRLD (RLD)in f ; G0 2
atomsRLD (RLD)in gg=(RLD)in g � (RLD)in f .

Thus (RLD)in g � (RLD)in f w
FRLD fdom F �RLD im G j F 2 atomsRLD (RLD)in f ; G 2

atomsRLD (RLD)in gg
But (RLD)in g � (RLD)in f v

FRLD f(dom G �RLD im G) � (dom F �RLD im F ) j F 2
atomsRLD (RLD)in f ;G2 atomsRLD (RLD)in gg.

Thus (RLD)in g � (RLD)in f =
FRLD fdom F �RLD im G j F 2 atomsRLD (RLD)in f ; G 2

atomsRLD(RLD)in gg=
FRLD �

domF �RLD imG j F 2atomsRLD(Src f ;Dst f);G2atomsRLD(Dst f ;Dst g);

domF �FCD imF v f ; domG�FCD imGv g
	
.

But

(RLD)in(g � f) =
GRLD

fa �RLD c j a 2 F(Src f); b 2 F(Dst f); c 2 F(Dst g); a �FCD b 2 atomsFCD f ;

b�FCD c2 atomsFCD gg:

Now it becomes obvious that (RLD)in g � (RLD)in f =(RLD)in(g � f). �

8.3 Complete reloids

Theorem 26. (FCD) and (RLD)out form mutually inverse bijections between complete reloids and
complete funcoids.

Proof. Consider the bijection
F
x2Src f (fxg �RLD hf ifxg) 7!

F
x2Src f (fxg �FCD hf ifxg)

from complete reloids into complete funcoids, where f ranges the set of complete
funcoids. But this bijection is exactly (FCD): ComplRLD(A; B) ! ComplFCD(A; B)
because (FCD)

F
x2Src f (fxg �RLD hf ifxg) =

F
x2Src f (FCD)(fxg �RLD hf ifxg) =F

x2Src f (fxg�
FCD hf ifxg). Thus we have proved that (FCD):ComplRLD(A;B)!ComplFCD(A;

B) is a bijection.
It remains to prove that (RLD)out g=

F
x2Src f (fxg�

RLD hgifxg) for every complete funcoid g

(because g=
F
x2Src f (fxg�

FCD hgifxg)).
Really, (RLD)out g w

F
x2Src f (fxg�

RLD hgifxg).
It remains to prove that

F
x2Src f (fxg�

RLD hgifxg)w (RLD)out g.
Let L2up

F
x2Src f (fxg�

RLD hgifxg). We will prove L2 up (RLD)out g.
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We can limit to the case when L is a reloidal product. Then

L2
\
fup(fxg�RLD hgifxg) j x2Src f g=

\
fffxg�Y j Y 2up hgifxgg j x2 Src f g:

It's enough to prove that L2up g. Really, 8x2 Src f : hLi�fxg2up hgifxg because
hLi�fxg� hT i�fxg for

T =
\
fffxg�Y j Y 2 upG(x)g j x2Src f g:

and thus

hLi�fxg �\
ffhfxg�Y i�fx0g j x0=x; Y 2upG(x)g j x2 Src f g =

fY j Y 2 upG(x0)g =

upG(x0):

So hLi�fxg2 up hgifxg and thus L2up g. �

Corollary 27. f =/ g) (RLD)out f =/ (RLD)out g for complete funcoids f and g.

Theorem 28. Composition of complete reloids is complete.

Proof. Let f , g be complete reloids. Then (FCD)(g � f) = (FCD)g � (FCD)f . Thus (because
(FCD)(g � f) is a complete funcoid) we have g � f = (RLD)out((FCD)g � (FCD)f), but (FCD)g �
(FCD)f is a complete funcoid, thus g � f is a complete reloid. �

Theorem 29.

1. (RLD)out g � (RLD)out f =(RLD)out(g � f) for composable complete funcoids f and g.

2. (RLD)out g � (RLD)out f =(RLD)out(g � f) for composable co-complete funcoids f and g.

Proof. Let f , g are composable complete funcoids.
(FCD)((RLD)out g � (RLD)out f) = (FCD)(RLD)out g � (FCD)(RLD)out f = g � f .
Thus (taking into account that (RLD)out g � (RLD)out f is complete) we have (RLD)out g �

(RLD)out f =(RLD)out(g � f).
For co-complete funcoids it's dual. �

9 Not yet written

Continuity in metric spaces is continuity in topology spaces; uniform continuity in metric spaces
is continuity in proximity and uniform spaces.

Pointfree analog of the lattice ¡. Also consider the lattice of �nite unions of funcoidal products
of �tlers (and generalizations).

Introduce core of a lattice FCD(F (A);F (B)) as FCD(A;B). Generalize it for staroids. Also
�lter on FCD(A;B) can be considered as pointfree reloids.

Uniform spaces (or proximities?) are equivalent to sets of �lters? (Do tornings bijectively
correspond to uniform spaces?)

Is Cor a functor for a. funcoids; b. reloids? Isn't it adjoint of "FCD or "RLD?
Adjunction of prefunctors:

http://www.sciencedirect.com/science/article/pii/0304397585900623 (free download, also Google
for �pre-adjunction�, also �semi� instead of �pre�) Are (FCD) and (RLD)in adjunct?

De�nition 30. A morphism of a category each Mor-sets of which is a meet-semilattice, is weakly
metamonovalued i� (gu h) � f =(g � f)u (h� f). Similarly de�ne weakly metainjective.

Prove that monovalued, metamonovalued, and weakly metamonovalued are the same for Rel,
FCD, and RLD.

What are pointfree funcoids between PA and PB?
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Conjecture 31. For an injective funcoid f :

1. hf i
dF S=

d
X2S hf iX and S 2PPSrc f .

2. hf i
dF

S=
d
X2S hf iX and S 2PF Src f .

Equality (
T

G) � f=
T
g2G (g � f) for every G implies that f is a function. Generalize for

funcoids and reloids.
I do some research in:

� backward.pdf

� multireloids-relationships.pdf

Question: Can we restore the set of binary relations, knowing only order of FCD(A;B)? Note that it
is not the center of the lattice, as not all funcoids are in the center. Yes, it can be characterized as
joins of complemented funcoids or joins of complemented atomic funcoids. Is every complemented
funcoid principal? This way principality can be generalized for pointfree funcoids. The set of
principal p.f. funcoids is join-closed. When �ltrator of pointfree funcoids is �ltered?

Should we extend �ltrators with �nite join/meet closed core to nullary closed (having
bottom/top)? The old concept shall be named binary join/meet closed �ltrators. These are related
with up/down aligned �ltrators.

a ? b=
F
fz 2A j aw bu zg= b n a= b�t a for �lters. Also dual of second quasidi�erence.

De�ne Fréchet element for a �ltrator by the formula 
 =max fX 2 F j Cor X = 0Zg. (It uses
the formula Cor

FF S =
FF hCoriS which in turn uses properties of Fréchet �lter, so this would

probably a circular proof.)
What about pseudocomplement �lter of in�nite joins and meets of �lters?
Write an explicit formula for composition with a complete reloid (with the function F (�) to

which the complete reloid bijectively corresponds). Using this formula prove that complete reloids
are meta-complete. Also for funcoids.

Conjecture 32. �= [f ] for a funcoid f i� all of the following: [TODO: generalize for staroids]

1. :(0 �Y)
2. :(X � 0)

3. (I tJ ) �K,I �K_J �K;
4. K � (I t J ),K � I _K �J ;

5. X [f ]
d
S,8Y 2S:X [f ]Y for �ltered set S of �lters;

6.
d
S [f ]Y,8X 2S:X [f ]Y for �ltered set S of �lters.

Conjecture 33. Every funcoid is a composition of a co-complete funcoid and complete funcoid (or
vice versa?) [TODO: Try to prove it using the fact that a funcoid is a join of products of ultra�lters.
What's about reloids?] [TODO: If this conjecture is false, what about representing every funcoid
as compositon of three funcoids: complete, principal, and co-complete?]

The following are equivalent for a funcoid f (call it strictly monovalued funcoid ):

1. f is a function restricted to a �lter;

2. f corresponds to a monovalued reloid;

3. Is it equivalent to monovaluedness of (RLD)inf or (RLD)outf? ((RLD)inf is not monovalued
if f is an identity)

4. other? (no ideas: open question)

Use the above result for ordering of �lters.
Homeomorphisms between funcoids. They are also isomorphisms between �lters?
Check current.tm and other �les.
Preservatoin of properties (re�exivity, summetry, etc.) of funcoids and reloids by lattice oper-

ations.
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9.1 Last axiom of proximity
As the following propositions show (merge them into one theorem), the last axiom of proximity is
equivalent to transitivity of funcoids:

Proposition 34. If f is a transitive, symmetric funcoid, then the last axiom of proximity holds.

Proof. :(A [f ]B),:(A [f¡1 � f ]B),hf iB�hf iA,9M 2Ob f :M �hf iA^M �hf iB. �

Proposition 35. For a re�exive funcoid, the last axiom of proximity implies that it is transitive
and symmetric.

Proof. Let :(A [f ] B) implies 9M : M � hf iA ^ M � hf iB. Then :(A [f ] B) implies :
(A [f¡1 � f ] B) that is f w f¡1 � f and thus f = f¡1 � f . By theorem ??(about transitive
endomorphisms) f is transitive and symmetric. �

So proximity spaces are the same as re�exive, symmetric, transitive funcoids.
Remove all other de�nitions of uniform spaces, to be de�ned exactly once.

10 Misc
Say that (FCD) and "FCD, "RLD are functors.F

fF (x) j x2Ag !
F
x2A F (x) (�rst de�ne this notation).

De�ne C(A;B)=MorC (A;B).
Change super�usous notation: "FCD(A;B)f ! "FCD(A; B; f) and likewise for RLD. The old

notation is sometimes useful as in the de�nition �=
d �

"F(R)(¡"; ") j "2R; " > 0
	
.

Proofs that "FCD(g � f)= "FCDg � "FCDf and "RLD(g � f) = "RLDg � "RLDf .
Probably, idC(A) ! 1A

C and leave idAFCD for restricted identity funcoids and reloids.

Theorem 36. A complete lattice is atomistic i� it is atomically separable.

Proof.
). Let our poset is atomistic. Then obviously atoms a=/ atoms b for elements a=/ b.

(. Let �atoms� be injective. Consider an element a of our poset. Let b=
F

atomsa. Obviously
b v a and thus atoms b � atoms a. But if x 2 atoms a then xv b and thus x 2 atoms b. So
atoms a= atoms b. By injectivity a= b that is a=

F
atoms a. �

De�nition 37.
FC X=

defFC(SrcX;DstX) X for a morphism X of a directed multigraph C each
Mor-set of which is a poset. Similarly for

d
, t, u.

Say: Whilst I have (mostly) throughly studied basic properties of funcoids, staroids (de�ned
below) are yet much a mystery. For example, we do not know whether the set of staroids on
powersets is atomic.

star-comparison.tm
cross-composition-funcoids.tm
todd-notes.tm

11 Errors
�Theorem 17.150. Anchored relations with objects being atomic posets and above de�ned compo-
sitions form a quasi-invertible category with star-morphisms.�

It is wrong, because composition of a star-morphism m with identify morphisms may be not
equal to m. In the de�nition of general cross-composition product we can replace quasi-invertible
category with quasi-invertible pre-category.
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