This is a draft which I will never publish. It is because this theory is unnecessarity comlex but has no applications.

Quasi-cartesian functions

Above we have defined several different kinds of product. These products resemble cartesian product. Saying this formally, these functions are quasi-cartesian as defined below.

First (before formal definitions) I will give an example of a quasi-cartesian function. The first and the most prominent example is certain quasi-cartesian situation \mathfrak{S} together with the well known quasi-cartesian function *cartesian product of an indexed family of sets*. Below is a quasi-cartesian situation \mathfrak{S} :

- 1. Forms are small sets.
- 2. Arguments are pairs $(\mho; r)$ where \mho is a form and $r \in \mathscr{P} \mho$.
- 3. The form corresponding to an argument $(\mho; r)$ is \mho .
- 4. Zero for the form \mho is defined by the formula $Z \mho = (\mho; \emptyset)$.

The quasi-cartesian function f from \mathfrak{S} to \mathfrak{S} is defined by the formula

$$f(\lambda i \in D: (\mho_i; r_i)) = (\prod \ \mho_i; \prod \ r_i).$$

Now proceed to the formal definitions:

Definition 1. A quasi-cartesian situation \mathfrak{S} is:

- 1. a set F (forms);
- 2. a set X (arguments);
- 3. a function $\rho \in F^X$ (forms of arguments);
- 4. a function $Z \in X^F$ (zeros)

such that $\rho \circ Z \circ \rho = \rho$.

Definition 2. The set ZC is the set of such small indexed families of arguments that for every small indexed family x of arguments

$$x \in \operatorname{ZC} \Leftrightarrow \exists i \in \operatorname{dom} x: x_i = Z(\rho(x_i)). \tag{1}$$

Remark 3. For theorems below we will need only that ZC is a set of indexed families of arguments. The formula (1) is not required, but there are no need to generalize here.

Let fix two quasi-cartesian situations \mathfrak{S}_0 (source) and \mathfrak{S}_1 (destination).

Definition 4. A pre-quasi-cartesian function is a function f such that the image of f is a subset of X_1 and every element of the domain of f is an indexed family of elements of X_0 such that:

- 1. $x \in \mathbb{ZC}_0 \Leftrightarrow fx = Z_1(\rho_1 fx)$ for every $x \in \text{dom } f$;
- 2. $\rho_0 \circ x = \rho_0 \circ y \Rightarrow \rho_1 f x = \rho_1 f y$ for every $x, y \in \text{dom } f$.

There exists a function Υ (aggregation) conforming to the formula $\Upsilon(\rho_0 \circ x) = \rho_1 f x$.

A pre-quasi-cartesian function can be described first defining a function Υ from small indexed families of forms into forms such that $\rho_1 fx = \Upsilon(\rho_0 \circ x)$ and $x \in \mathbb{Z}C_0 \Leftrightarrow fx = Z_1 \Upsilon(\rho_0 \circ x)$.

Definition 5. A quasi-cartesian function is such pre-quasi-cartesian function f that $f|_{\{x \in X_0^{\text{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \mathbb{Z}C_0}$ is an injection for every indexed family \mathfrak{A} of forms.

Definition 6. A pre-quasi-cartesian function with injective aggregation is a pre-quasi-cartesian function for which the Υ function is injective.

Exercise 1. Prove that the above defined "cartesian product of an indexed family of sets" is a quasi-cartesian function for two quasi-cartesian systems with injective aggregation.

Definition 7. Restriction of a quasi-cartesian situation is this quasi-cartesian situation with the set of arguments X replaced by a smaller set X' such that im $Z \subseteq X'$ and forms of arguments ρ replaced with $\rho' = \rho|_{X'}$.

Proposition 8. Every restriction of a quasi-cartesian situation is a quasi-cartesian situation.

Proof. We need to prove $\rho' \circ Z \circ \rho' = \rho'$. This formula follows from $\rho' = \rho|_X$ and dom $\rho' \supseteq \operatorname{im} Z$. \Box

Definition 9. Restriction of a pre-quasi-cartesian function is the restriction of the source quasicartesian situation, the destination quasi-cartesian situation, together with a restriction of the quasi-cartesian function to indexed families of the new set of (source) arguments.

Obvious 10. Restriction of a pre-quasi-cartesian function is a pre-quasi-cartesian function.

Obvious 11. Restriction of a quasi-cartesian function is a quasi-cartesian function.

Obvious 12. Restriction of a (pre-)quasi-cartesian situation with injective aggregation is a (pre-)quasi-cartesian situation with injective aggregation.

When card $\langle f \rangle \{x\} = 1$ for a binary relation f, we will denote f(x) or fx the element of the singleton $\langle f \rangle \{x\}$.

Proposition 13. For pre-quasi-cartesian function f we have

$$(\langle f \rangle \{ x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A} \}) \setminus \{ Z_1(\Upsilon_f \mathfrak{A}) \} = \langle f \rangle (\{ x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho \circ x = \mathfrak{A} \} \setminus \operatorname{ZC}_1).$$

Proof.

$$\begin{split} \langle f \rangle (\{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \operatorname{ZC}_0) &= \\ \langle f \rangle \{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A} \land x \notin \operatorname{ZC}_0\} &= \\ \langle f \rangle \{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A} \land fx \neq Z_1 \Upsilon_f(\rho_0 \circ x)\} &= \\ \langle f \rangle \{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A} \land fx \neq Z_1 \Upsilon_f \mathfrak{A}\} &= \\ (\langle f \rangle \{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\}) \setminus \{Z_1(\Upsilon_f \mathfrak{A})\}. \end{split}$$

Proposition 14. card $\langle f^{-1} \rangle \{y\} = 1$ if $y \in (\langle f \rangle \{x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\}) \setminus \{Z_1(\Upsilon_f \mathfrak{A})\}.$

Proof. card $\langle f^{-1} \rangle \{y\} \ge 1$ is obvious. It remains to show that $y[f^{-1}] a \land y[f^{-1}] b \Rightarrow a = b$ for every a and b. Really, let $y[f^{-1}] a \land y[f^{-1}] b$. Then y = fa and y = fb and thus a = b because

$$y \in \langle f \rangle (\{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \operatorname{ZC}_0) \text{ and } f|_{\{x \in X_0^{\operatorname{dom}\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \operatorname{ZC}_0} \text{ is an injection.} \qquad \Box$$

Fix quasi-cartesian situations \mathfrak{S}_A , \mathfrak{S}_B , \mathfrak{S}_C and quasi-cartesian functions $f: \mathfrak{S}_A \to \mathfrak{S}_B$ and $g: \mathfrak{S}_A \to \mathfrak{S}_C$ such that dom $f = \operatorname{dom} g$. Let \mathfrak{A} is a small indexed family of forms. [TODO: Check below formulations (it is possible that I've done little errors confusing A, B, and C).]

For a small indexed family ${\mathfrak A}$ of forms let:

$$\varphi_{\mathfrak{A}} = g \circ \operatorname{id}_{\{x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}} \circ f^{-1}.$$

Obvious 15. $\varphi_{\mathfrak{A}} = g|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}} \circ f^{-1} = g \circ (f|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}})^{-1}.$

Proposition 16. $\varphi_{\mathfrak{A}}$ is a function and dom $\varphi_{\mathfrak{A}} = \langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}$ and for every $y \in \operatorname{dom} \varphi_{\mathfrak{A}}$ we have

$$\varphi_{\mathfrak{A}} y = \begin{cases} Z_C(\Upsilon_g \mathfrak{A}) & \text{if } y = Z_B(\Upsilon_f \mathfrak{A}); \\ g f^{-1} y & \text{if } y \neq Z_B(\Upsilon_f \mathfrak{A}). \end{cases}$$

Proof. It follows from the previous proposition.

Theorem 17. $\varphi_{\mathfrak{A}} = g \circ f^{-1}|_{\langle f \rangle \{x \in X_A^{\mathrm{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}}$.

Proof. If $y \in (\langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}) \setminus \{ Z_B(\Upsilon_f \mathfrak{A}) \}$ then card $\langle f^{-1} \rangle \{ y \} = 1$ and thus $\langle f \rangle \{ y \} \in \{ x \in X_B^{\operatorname{dom} \mathfrak{A}} \mid \rho_B \circ x = \mathfrak{A} \} \setminus \operatorname{ZC}_B$. Consequently

$$\langle \varphi_{\mathfrak{A}} \rangle \{ y \} = \langle g \circ f^{-1} \rangle \{ y \} = \langle g \circ f^{-1} |_{\langle f \rangle \{ x \in X_A^{\mathrm{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}} \rangle \{ y \}.$$

 $\langle \varphi_{\mathfrak{A}} \rangle \{ Z_B(\Upsilon_f \mathfrak{A}) \} = Z_C(\Upsilon_g \mathfrak{A})$ and

$$\begin{split} \langle g \circ f^{-1} |_{\langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}} \rangle \{ Z_C(\Upsilon_g \mathfrak{A}) \} &= \\ \langle g \circ f^{-1} \rangle \{ Z_C(\Upsilon_g \mathfrak{A}) \} &= \\ \langle g \rangle (\{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \} \cap \operatorname{ZC}_A) &= \\ Z_C(\Upsilon_g \mathfrak{A}). \end{split}$$

Thus $\langle \varphi_{\mathfrak{A}} \rangle \{ y \} = \langle g \circ f^{-1} |_{\langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}} \rangle \{ y \}$ for every $y \in \langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}$. \Box

Theorem 18. $\varphi_{\mathfrak{A}}$ is a bijection

$$\langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \} \to \langle g \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A} \}.$$

Proof. That $\varphi_{\mathfrak{A}}$ is a surjection

$$\langle f \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \ | \ \rho_0 \circ x = \mathfrak{A} \} \rightarrow \langle g \rangle \{ x \in X_A^{\operatorname{dom} \mathfrak{A}} \ | \ \rho_0 \circ x = \mathfrak{A} \}$$

follows from a proposition above and symmetry. To prove that it is an injection is enough to show that:

1. $gf^{-1}y \neq Z_C(\Upsilon_g\mathfrak{A})$ if $y \neq Z_B(\Upsilon_f\mathfrak{A})$ for every $y \in \operatorname{dom} \varphi_{\mathfrak{A}}$.

2.
$$g \circ f^{-1}|_{(\langle f \rangle \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}) \setminus \{Z_B(\Upsilon_f \mathfrak{A})\}}$$
 is injective.

Really,

1. Let $y \neq Z_B(\Upsilon_f \mathfrak{A})$ for some $y \in \text{dom } \varphi_{\mathfrak{A}}$. Then $f^{-1}y \notin \text{ZC}_A$ because otherwise $fx \neq Z_B(\Upsilon_f \mathfrak{A})$ for some $x \in \text{ZC}_A$. Consequently $gf^{-1}y \neq Z_C(\Upsilon_g \mathfrak{A})$.

2.
$$f^{-1}|_{\langle f \rangle \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\} \setminus \{Z_B(\Upsilon_f \mathfrak{A})\}}$$
 is obviously injective.
 $g|_{\langle f^{-1} \rangle ((\langle f \rangle \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}) \setminus \{Z_B(\Upsilon_f \mathfrak{A})\})}$ is injective because $f^{-1} \ y \notin \operatorname{ZC}_A$ for $y \neq Z_B(\Upsilon_f \mathfrak{A})$.
Thus $g \circ f^{-1}|_{(\langle f \rangle \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}) \setminus \{Z_B(\Upsilon_f \mathfrak{A})\}}$ is injective.

As shown by the below theorems, every two quasi-cartesian functions are equivalent up to a bijection:

Theorem 19. $\varphi_{\mathfrak{A}} \circ f|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}} = g|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}}.$

Proof. If $x \in \{x \in X_A^{\operatorname{dom} \mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\} \setminus \operatorname{ZC}_A$ then [TODO: Make clear that multivalued functions are not applied below. Rewrite the proof for clarity.]

$$\begin{aligned} & \left(\varphi_{\mathfrak{A}}\circ f|_{\{x\in X_{A}^{\operatorname{dom}\mathfrak{A}}\mid\rho_{A}\circ x=\mathfrak{A}\}}\right)x = \\ & g\operatorname{id}_{\{x\in X_{A}^{\operatorname{dom}\mathfrak{A}}\mid\rho_{A}\circ x=\mathfrak{A}\}}f^{-1}f|_{\{x\in X_{A}^{\operatorname{dom}\mathfrak{A}}\mid\rho_{A}\circ x=\mathfrak{A}\}}x = \\ & g\operatorname{id}_{\{x\in X_{A}^{\operatorname{dom}\mathfrak{A}}\mid\rho_{A}\circ x=\mathfrak{A}\}}x = \\ & gx = \\ & \left(g|_{\{x\in X_{A}^{\operatorname{dom}\mathfrak{A}}\mid\rho_{A}\circ x=\mathfrak{A}\}}\right)x. \end{aligned}$$

If
$$x \in \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\} \cap \operatorname{ZC}_A$$
 then
 $(f|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}})x = Z_B \Upsilon_f \mathfrak{A} \text{ and } (g|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}})x = Z_C \Upsilon_g \mathfrak{A};$
 $\langle f^{-1} \circ (f|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}})\rangle\{x\} = \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\} \cap \operatorname{ZC}_A.$ Thus it is easy to show that
 $\langle g \circ \operatorname{id}_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}} \circ f^{-1} \circ (f|_{\{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}})\rangle\{x\} = \{Z_C \Upsilon_g \mathfrak{A}\}.$

Now let also f and g be with injective aggregation.

Let $\Phi = g \circ f^{-1}$.

Lemma 20. The set of all $\langle f \rangle \{ x \in X_0^{\text{dom }\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A} \}$, for \mathfrak{A} being small indexed families of forms, is a partition of the set im f where f is a quasi-cartesian function with injective aggregation $\mathfrak{S}_1 \to \mathfrak{S}_2$.

Proof. Let denote this set S. That $\bigcup S = \operatorname{im} f$ is obvious.

Suppose $A = \langle f \rangle \{ x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}_0 \}$ and $B = \langle f \rangle \{ x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}_1 \}$ for families $\mathfrak{A}_0 \neq \mathfrak{A}_1$ of forms. Then for every $a \in A$ we have a = fx where $\rho_0 \circ x = \mathfrak{A}_0$. Thus $\rho_1 a = \Upsilon \mathfrak{A}_0$ and $\rho_1 b = \Upsilon \mathfrak{A}_1$; $\rho_1 a \neq \rho_1 b$; $a \neq b$. So S is a disjoint set. \Box

Theorem 21. Φ is a bijection im $f \rightarrow \text{im } g$.

Proof. From the lemma.

Theorem 22. $\Phi \circ f = g$.

Proof. Because $\Phi \circ f|_{\langle f \rangle \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}} = g|_{\langle f \rangle \{x \in X_A^{\operatorname{dom}\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}}$ and the lemma. \Box

Theorem 23.

1. $\varphi_{\mathfrak{A}} = \Phi|_{\{f\} \{x \in X_A^{\text{dom }\mathfrak{A}} \mid \rho_A \circ x = \mathfrak{A}\}}$ for every small indexed family \mathfrak{A} of forms.

2. Φ is the union of all functions $\varphi_{\mathfrak{A}}$ where \mathfrak{A} is a small indexed family of forms.

Proof. Both are trivial from the above.

Definition 24. A product-projection system is a quasi-cartesian function together with a function \Pr whose values are indexed families, such that for every $x \in \text{dom } f$:

$$x \notin \mathrm{ZC}_0 \Rightarrow \Pr f x = x.$$

TODO: Also: $f(\Pr y) = y$ if $y \in \operatorname{im} f$.

[TODO: Particular product-projection systems.]

Some examples of quasi-cartesian situations and functions

Definition 25. Let C is a category with zero morphisms. The corresponding quasi-cartesian situation is:

- Forms are pairs of objects.
- Arguments are morphisms.
- Form of an argument x is $(\operatorname{Src} x; \operatorname{Dst} x)$.
- Zero for form (A; B) is the zero morphism 0_{AB} .

Let us prove it is really a quasi-cartesian situation.

Proof. We need to prove $\rho \circ Z \circ \rho = \rho$. Really, let f is an argument. Then $\rho Z \rho f = \rho Z$ (Src f; Dst f) = $\rho 0_{\text{Src } f, \text{Dst } f} = (\text{Src } f; \text{Dst } f) = \rho f$.

The above definition immediately gives rise of quasi-cartesian situations for binary relations (the category **Rel**), pointfree funcoids (the category of small pointfree funcoids), reloids (the category of small reloids).

Definition 26. The quasi-cartesian situation of anchored relations:

- Forms F are small indexed families of sets.
- Arguments are small anchored relations.
- Form of an argument is the arity of anchored relation.

• Zero Z for a form is the empty relation of that form.

Proposition 27. The quasi-cartesian situation of anchored relations is really a quasi-cartesian situation.

Proof. We need to prove $\rho \circ Z \circ \rho = \rho$. Really let f is an anchored relation of the form \mathfrak{A} . Then $Z\rho f$ is the zero relation of the same form ρf . Consequently $\rho Z\rho f = \rho f$.

Proposition 28. Reindexation product (for small indexed families of relation) is a quasi-cartesian function with injective aggregation from the quasi-cartesian situation of anchored relations to the same quasi-cartesian situation.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small indexed families x, y of anchored relations:

1.
$$x \in \text{ZC} \Leftrightarrow \prod^{(D)} x = Z(\rho \prod^{(D)} x);$$

2. $\rho \circ x = \rho \circ y \Rightarrow \rho \prod^{(D)} x = \rho \prod^{(D)} y;$

that is

1.
$$x \in \mathrm{ZC} \Leftrightarrow \prod^{(D)} x = Z\Big(\text{arity } \prod^{(D)} x \Big);$$

2. arity
$$\circ x = arity \circ y \Rightarrow arity \prod^{(D)} x = arity \prod^{(D)} y;$$

that is

1.
$$x \in \mathrm{ZC} \Leftrightarrow \prod^{(D)} x = Z\Big(\operatorname{arity} \prod^{(D)} x\Big);$$

2. arity
$$\circ x = arity \circ y \Rightarrow uncurry(arity \circ x) = uncurry(arity \circ y);$$

but these formulas are obvious.

Next prove that it is a quasi-cartesian function. We need to show that for every indexed family of sets

$$\left(\prod^{(D)} x\right)|_{x\in X^{\operatorname{dom}\mathfrak{A}}\mid\rho\circ x=\mathfrak{A}\setminus\operatorname{ZC}}$$

is injection. This follows from the known fact that $(\prod x)|_{x \in X^{\text{dom }\mathfrak{A}} \mid \rho \circ x = \mathfrak{A} \setminus \mathbb{ZC}}$ is an injection.

Last, we need to prove that it is with injective aggregation. Define $\Upsilon(\rho \circ x) = \rho \prod^{(D)} x$ that is $\Upsilon(\operatorname{arity} \circ x) = \operatorname{uncurry}(\operatorname{arity} \circ x)$ that is $\Upsilon p = \operatorname{uncurry} p$. Obviously this Υ is injective.

Proposition 29. Ordinated product (for small indexed families of relation) is a quasi-cartesian function from the quasi-cartesian situation of anchored relations to the same quasi-cartesian situation.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small indexed families x, y of anchored relations:

1.
$$x \in \operatorname{ZC} \Leftrightarrow \prod^{(\operatorname{ord})} x = Z\left(\rho \prod^{(\operatorname{ord})} x\right);$$

2.
$$\rho \circ x = \rho \circ y \Rightarrow \rho \prod^{(\text{ord})} x = \rho \prod^{(\text{ord})} y;$$

that is

1.
$$x \in \text{ZC} \Leftrightarrow \prod^{(\text{ord})} x = Z\left(\text{arity } \prod^{(\text{ord})} x\right);$$

2. $\operatorname{arity} \circ x = \operatorname{arity} \circ y \Rightarrow \operatorname{arity} \prod^{(\text{ord})} x = \operatorname{arity} \prod^{(\text{ord})} y;$

that is

1.
$$x \in \operatorname{ZC} \Leftrightarrow \prod^{(\operatorname{ord})} x = Z\left(\operatorname{arity} \prod^{(\operatorname{ord})} x\right);$$

2. arity $\circ \, x \,{=}\, \mathrm{arity} \circ \, y \,{\Rightarrow}\, \sum \, (\mathrm{arity} \circ x) \,{=}\, \sum \, (\mathrm{arity} \circ y);$

but these formulas are obvious.

Next prove that it is a quasi-cartesian function. We need to show that for every indexed family of sets

$$\left(\prod^{(D)} x\right)|_{\{x\in X^{\operatorname{dom}\mathfrak{A}}\mid\rho\circ x=\mathfrak{A}\}\backslash\operatorname{ZC}}$$

is injection. This follows from the known fact that $(\prod x)|_{x \in X^{\text{dom }\mathfrak{A}} \mid \rho \circ x = \mathfrak{A} \setminus \mathbb{ZC}}$ is an injection. [TODO: More detailed proof.]

Definition 30. The quasi-cartesian situation of pointfree funcoids over posets with least elements is:

- 1. Forms are pairs $(\mathfrak{A}; \mathfrak{B})$ of posets with least elements.
- 2. Arguments are pointfree funcoids.
- 3. The form of an argument f is (Src f; Dst f).
- Zero of the form (𝔅;𝔅) is 0^{FCD(𝔅;𝔅)} = (𝔅× {0^𝔅};𝔅 × {0^𝔅}). (It exists because 𝔅 and 𝔅 have least elements.)

Proposition 31. It is really a quasi-cartesian situation.

Proof. We need to prove $\rho \circ Z \circ \rho = \rho$. Really,

$$\rho Z \rho f = \rho Z(\operatorname{Src} f; \operatorname{Dst} f) = \rho 0^{\mathsf{FCD}(\operatorname{Src} f; \operatorname{Dst} f)} = (\operatorname{Src} f; \operatorname{Dst} f) = \rho f.$$

Definition 32. The quasi-cartesian situation of binary relations is:

- 1. Forms are pairs (A; B) of sets.
- 2. Arguments are **Rel**-morphisms;
- 3. The form of an argument f is (Src f; Dst f).
- 4. Zero of the form (A; B) is the **Rel**-morphism $(\emptyset; A; B)$.

Proposition 33. It is really a quasi-cartesian situation.

Proof. We need to prove $\rho \circ Z \circ \rho = \rho$. Really,

$$\rho Z \rho f = \rho Z (\operatorname{Src} f; \operatorname{Dst} f) = \rho (\emptyset; \operatorname{Src} f; \operatorname{Dst} f) = (\operatorname{Src} f; \operatorname{Dst} f) = \rho f.$$

Definition 34. The quasi-cartesian situation of reloids is:

- 1. Forms are pairs (A; B) of sets.
- 2. Arguments are reloids.
- 3. The form of an argument f is (Src f; Dst f).
- 4. Zero of the form (A; B) is $0^{\mathsf{RLD}(A; B)}$.

Proposition 35. It is really a quasi-cartesian situation.

Proof. We need to prove $\rho \circ Z \circ \rho = \rho$. Really,

$$\rho Z \rho f = \rho Z(\operatorname{Src} f; \operatorname{Dst} f) = \rho 0^{\mathsf{RLD}(\operatorname{Src} f; \operatorname{Dst} f)} = (\operatorname{Src} f; \operatorname{Dst} f) = \rho f.$$

Next we need to prove that cross-composition product of some particular categories with starmorphisms are quasi-cartesian functions with injective aggregation.

Theorem 36. Cross-composition product (for small indexed families of relations) is a quasi-cartesian function with injective aggregation from the quasi-cartesian situation \mathfrak{S}_0 of binary relations to the quasi-cartesian situation \mathfrak{S}_1 of pointfree funcoids over posets with least elements.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small indexed families x, y of **Rel**-morphisms:

- 1. $x \in \operatorname{ZC}_0 \Leftrightarrow \prod^{(C)} x = Z_1 \left(\rho_1 \prod^{(C)} x \right);$
- 2. $\rho_0 \circ x = \rho_0 \circ y \Rightarrow \rho_1 \prod^{(C)} x = \rho_1 \prod^{(C)} y;$

 $\Pi^{(C)} x = Z_1 \Big(\rho_1 \Pi^{(C)} x \Big) \Leftrightarrow \Pi^{(C)} x = Z_1 (\mathsf{FCD}(\mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i); \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i))$ $Dst x_i))) \Leftrightarrow \Pi^{(C)} x = 0^{\mathsf{FCD}(\mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i); \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Dst} x_i))} \Leftrightarrow \forall a \in \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i))$ $dom x: \operatorname{Src} x_i): \Big\langle \Pi^{(C)} x \Big\rangle a = 0^{\operatorname{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Dst} x_i)} \Leftrightarrow \forall a \in \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i))$ $StarComp(a; x) = 0^{\operatorname{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Dst} x_i)} \Leftrightarrow \forall a \in \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i))$ $GR \operatorname{StarComp}(a; x) = \emptyset;$

 $\forall a \in \operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Src} x_i): \operatorname{GR} \operatorname{StarComp}(a; x) = \emptyset \Leftarrow x \in \operatorname{ZC}_0.$

 $\forall a \in \operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Src} x_i): \operatorname{GR} \operatorname{StarComp}(a; x) = \emptyset \Rightarrow \operatorname{GR} \operatorname{StarComp}((\operatorname{dom} x; \prod_{i \in \operatorname{dom} x} \operatorname{Src} x_i); x) = \emptyset \Rightarrow \nexists L \in \operatorname{U}^{\operatorname{arity} a} \exists y \in \prod_{i \in \operatorname{dom} x} \operatorname{Src} x_i \forall i \in \operatorname{arity} a: y_i x_i L_i \Leftrightarrow \neg \forall i \in \operatorname{arity} a \exists L \in \operatorname{U}, y \in \operatorname{Src} x_i: yx_i L \Leftrightarrow \neg \forall i \in \operatorname{arity} a: x_i \neq 0 \Leftrightarrow x \in \operatorname{ZC}_0.$

Thus $x \in \operatorname{ZC}_0 \Leftrightarrow \prod^{(C)} x = Z_1 \Big(\rho_1 \prod^{(C)} x \Big).$

If $\rho_0 \circ x = \rho_0 \circ y$ then arity $x = arity \ y = n$ for some index set n.

 $\rho_0 \circ x = \rho_0 \circ y \Rightarrow \lambda i \in n: (\operatorname{Src} x = \operatorname{Src} y \land \operatorname{Dst} x = \operatorname{Dst} y) \Rightarrow \rho_1 \prod^{(C)} x = \mathsf{FCD}(\operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Src} x_i); \operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Dst} x_i)) = \mathsf{FCD}(\operatorname{StarHom}(\lambda i \in \operatorname{dom} y: \operatorname{Src} y_i); \operatorname{StarHom}(\lambda i \in \operatorname{dom} y: \operatorname{Dst} y_i)) = \rho_1 \prod^{(C)} y.$

We have proved that it is a pre-quasi-cartesian function.

Next prove that it is a quasi-cartesian function, that is

$$\left(\prod^{(C)}\right)|_{x\in X_0^{\operatorname{dom}\mathfrak{A}}\mid\rho_0\circ x=\mathfrak{A}\setminus\operatorname{ZC}_0}$$

is an injection for every indexed family \mathfrak{A} of forms. Let $x \in \{x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \operatorname{ZC}_0$. To prove that it is an injection we will restore the value of x from $\prod^{(C)} x$.

$$\left\langle \prod^{(C)} x \right\rangle \{p\} = \operatorname{StarComp}(\{p\}; x) \text{ for every } p \in \mathcal{O}^n.$$

 $L \in \operatorname{GR}\operatorname{StarComp}(\{p\}; x) \Leftrightarrow \forall i \in n: p_i \, x_i \, L_i \Leftrightarrow \forall i \in n: L_i \in \langle x_i \rangle \{p_i\} \text{ for every } L \in \mathbb{O}^n.$

Thus GR StarComp $(\{p\}; x) = \prod_{i \in n} \langle x_i \rangle \{p_i\}.$

Since $x_i \neq 0$ there exist p such that $\langle x_i \rangle \{p_i\} \neq 0$. Take $k \in n$, $p'_i = p_i$ for $i \neq k$ and $p_k = q$ for an arbitrary value q; then

$$\langle x_k \rangle \{q\} = \Pr_k \prod_{i \in n} \langle x_i \rangle \{p'_i\} = \Pr_k \operatorname{GR} \operatorname{StarComp}(\{p'\}; x) = \Pr_k \operatorname{GR} \left\langle \prod_{i \in n} (C) x \right\rangle \{p'\}.$$

So the value of x can be restored from $\prod^{(C)} x$ by this formula.

It remained to prove that it is with injective aggregation.

We have $\Upsilon F = (\text{StarHom}(\lambda i \in \text{dom } f: F_{i,0}); \text{StarHom}(\lambda i \in \text{dom } f: F_{i,1}))$ for every form F.

It is really an injection because StarHom(-) are disjoint.

Theorem 37. Cross-composition product (for small indexed families of pointfree funcoids between separable atomic posets with least elements and atomistic posets) is a quasi-cartesian function (with injective aggregation) from the quasi-cartesian situation \mathfrak{S}_0 of pointfree funcoids over posets with least elements to the quasi-cartesian situation \mathfrak{S}_1 of pointfree funcoids over posets with least elements.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small indexed families x, y of pointfree funcoids:

- 1. $x \in \operatorname{ZC}_0 \Leftrightarrow \prod^{(C)} x = Z_1 \left(\rho_1 \prod^{(C)} x \right);$
- 2. $\rho_0 \circ x = \rho_0 \circ y \Rightarrow \rho_1 \prod^{(C)} x = \rho_1 \prod^{(C)} y;$

 $\Pi^{(C)} x = Z_1 \Big(\rho_1 \Pi^{(C)} x \Big) \Leftrightarrow \Pi^{(C)} x = Z_1 (\mathsf{FCD}(\mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i); \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i)) \Leftrightarrow \forall a \in \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i); \land \exists a = 0^{\operatorname{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Dst} x_i)} \Leftrightarrow \forall a \in \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i): \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{Src} x_i); \mathsf{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{StarHom}(\lambda i \in \mathsf{dom} x: \operatorname{StarHom}(\lambda i \in \mathsf{do$

 $\forall a \in \operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Src} x_i): \operatorname{GR} \operatorname{StarComp}(a; x) = \emptyset \Leftarrow x \in \operatorname{ZC}_0.$

 $\forall a \in \operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Src} x_i): \operatorname{GR} \operatorname{StarComp}(a; x) = \emptyset \Rightarrow \operatorname{GR} \operatorname{StarComp}((\operatorname{dom} x; \prod_{i \in \operatorname{dom} x} \operatorname{Src} x_i); x) = \emptyset \Rightarrow \nexists L \in \mathcal{O}^{\operatorname{arity} a} \exists y \in \prod_{i \in \operatorname{dom} x} \operatorname{Src} x_i \cap \prod_{i \in \operatorname{dom} x} \operatorname{atoms} \operatorname{Src} x_i \forall i \in \operatorname{arity} a: y_i \ [x_i] \ L_i \Leftrightarrow \nexists L \in \mathcal{O}^{\operatorname{arity} a} \exists y \in \prod_{i \in \operatorname{dom} x} \operatorname{atoms} \operatorname{Src} x_i \forall i \in \operatorname{arity} a: y_i \ [x_i] \ L_i \Leftrightarrow \# L \in \mathcal{O}^{\operatorname{arity} a} \exists y \in \prod_{i \in \operatorname{dom} x} \operatorname{atoms} \operatorname{Src} x_i \forall i \in \operatorname{arity} a: y_i \ [x_i] \ L_i \Leftrightarrow \neg \forall i \in \operatorname{arity} a \exists L \in \mathcal{O}, y \in \operatorname{atoms} \operatorname{Src} x_i: y \ [x_i] \ L \Rightarrow \neg \forall i \in \operatorname{arity} a: x_i \neq 0 \Leftrightarrow x \in \operatorname{ZC}_0.$

Thus $x \in \operatorname{ZC}_0 \Leftrightarrow \prod^{(C)} x = Z_1 \left(\rho_1 \prod^{(C)} x \right).$

If $\rho_0 \circ x = \rho_0 \circ y$ then arity $x = arity \ y = n$ for some index set n.

 $\begin{array}{l} \rho_0 \circ x = \rho_0 \circ y \Rightarrow \lambda i \in n: (\operatorname{Src} x = \operatorname{Src} y \wedge \operatorname{Dst} x = \operatorname{Dst} y) \Rightarrow \rho_1 \prod^{(C)} x = \mathsf{FCD}(\operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Src} x_i); \operatorname{StarHom}(\lambda i \in \operatorname{dom} x: \operatorname{Dst} x_i)) = \mathsf{FCD}(\operatorname{StarHom}(\lambda i \in \operatorname{dom} y: \operatorname{Src} y_i); \operatorname{StarHom}(\lambda i \in \operatorname{dom} y: \operatorname{Dst} y_i)) = \rho_1 \prod^{(C)} y. \end{array}$

We have proved that it is a pre-quasi-cartesian function.

Next prove that it is a quasi-cartesian function, that is

$$\left(\begin{array}{c} (C)\\ \prod\end{array}\right)|_{\{x\in X_0^{\operatorname{dom}\mathfrak{A}}\mid \rho_0\circ x=\mathfrak{A}\}\backslash \operatorname{ZC}_0}$$

is an injection for every indexed family \mathfrak{A} of forms. Let $x \in \{x \in X_0^{\mathrm{dom}\,\mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \mathbb{ZC}_0$. To prove that it is an injection we will restore the value of x from $\prod^{(C)} x$.

$$\left\langle \prod^{(C)} x \right\rangle p = \operatorname{StarComp}(p; x) \text{ for every } p \in \prod_{i \in n} \operatorname{atoms} \operatorname{Src} x_i.$$

It is easy to see that $\operatorname{GR} p \cap \prod_{i \in n} \operatorname{atoms} \operatorname{Src} x_i = \{p\}$. Thus

 $L \in \operatorname{GR}\operatorname{StarComp}(p; x) \Leftrightarrow \forall i \in n: p_i[x_i] \ L_i \Leftrightarrow \forall i \in n: L_i \in \langle x_i \rangle p_i \text{ for every } L \in \prod_{i \in n} \operatorname{Src} x_i.$

Thus GR StarComp $(p; x) = \prod_{i \in n} \langle x_i \rangle p_i$.

Since $x_i \neq 0$ there exist p such that $\langle x_i \rangle p_i \neq 0$. Take $k \in n$, $p'_i = p_i$ for $i \neq k$ and $p'_k = q$ for an arbitrary value q; then

$$\langle x_k \rangle q = \Pr_k \prod_{i \in n} \langle x_i \rangle p'_i = \Pr_k \operatorname{GR} \operatorname{StarComp}(p'; x) = \Pr_k \operatorname{GR} \left\langle \prod^{(C)} x \right\rangle p'.$$
(2)

Note that the theorem ?? in [?] applies to every x_i .

So the value of x can be restored from $\prod^{(C)} x$ by this formula.

It remained to prove that it is with injective aggregation.

We have $\Upsilon F = (\text{StarHom}(\lambda i \in \text{dom } f: F_{i,0}); \text{StarHom}(\lambda i \in \text{dom } f: F_{i,1}))$ for every form F.

It is really an injection because StarHom(-) are disjoint.

Conjecture 38. Cross-composition product (for small indexed families of reloids) is a quasicartesian function (with injective aggregation) from the quasi-cartesian situation \mathfrak{S}_0 of reloids to the quasi-cartesian situation \mathfrak{S}_1 of pointfree funcoids over posets with least elements.

Remark 39. The above conjecture is unsolved even for product of two multipliers.

Theorem 40. Reloidal product (for small indexed families of filters on powersets) with multireloid projections is a product-projection system with injective aggregation from the quasi-cartesian situation \mathfrak{S}_0 of filters to the quasi-cartesian situation \mathfrak{S}_1 of multireloids.

Ordered quasi-cartesian situations

Definition 41. An ordered quasi-cartesian situation is a quasi-cartesian situation together with a partial order on each its set of its arguments of each given form.

Definition 42. An order-preserving quasi-cartesian function from a quasi-cartesian situation \mathfrak{S}_0 to a quasi-cartesian situation \mathfrak{S}_1 is a quasi-cartesian function σ such that $\sigma x \sqsubseteq \sigma y \Rightarrow x \sqsubseteq y$ for every indexed family \mathfrak{A} of forms and $x, y \in \{x \in X_0^{\operatorname{dom} \mathfrak{A}} \mid \rho_0 \circ x = \mathfrak{A}\} \setminus \operatorname{ZC}_0$.

Obvious 43. Every order-preserving quasi-cartesian function is a quasi-cartesian function with injective aggregation.

Remark 44. Using the obvious fact above, we can prove again that the considered quasi-cartesian functions are with injective aggregation using the below proved statements that they are order-preserving.

Proposition 45. Cross-composition product (for small indexed families of relations) is an orderpreserving quasi-cartesian function from the quasi-cartesian situation \mathfrak{S}_0 of binary relations to the quasi-cartesian situation \mathfrak{S}_1 of pointfree funcoids over posets with least elements equipped with the usual orderings of these sets.

Proof. We need to prove $\forall i \in n$: $(f_i \neq \emptyset \land g_i \neq \emptyset) \land \prod^C f \sqsubseteq \prod^C g \Rightarrow f \sqsubseteq g$ for every *n*-indexed families f and g of binary relations.

 $\left\langle \prod^{(C)} f \right\rangle \prod a = \prod_{i \in n} \langle f_i \rangle a_i.$

Fix $k \in n, x \in \mathcal{O}$. Let $a = \mathcal{O}^{n \setminus \{k\}} \cup \{(k; x)\}$. Then

$$\left\langle \prod_{i \in n}^{(C)} f \right\rangle \prod a = \prod_{i \in n} \left\{ \begin{array}{l} \langle f_i \rangle \mho & \text{if } i \neq k; \\ \langle f_k \rangle \{x\} & \text{if } i = k. \end{array} \right. \text{ and } \left\langle \prod_{i \in n}^{(C)} g \right\rangle \prod a = \prod_{i \in n} \left\{ \begin{array}{l} \langle g_i \rangle \mho & \text{if } i \neq k; \\ \langle g_k \rangle \{x\} & \text{if } i = k. \end{array} \right.$$

Taking into account that $\langle f_i \rangle \mho \neq \emptyset$ and $\langle g_i \rangle \mho \neq \emptyset$ for every $i \in n$, by properties of Cartesian product, we get $\langle f_k \rangle \{x\} \sqsubseteq \langle g_k \rangle \{x\}$ for every $x \in \mho$ and thus $f_k \sqsubseteq g_k$.

Corollary 46. Cross-composition product (for small indexed families of Rel-morphisms) is an order-preserving quasi-cartesian function from the quasi-cartesian situation \mathfrak{S}_0 of Rel-morphisms to the quasi-cartesian situation \mathfrak{S}_1 of pointfree funcoids over posets with least elements.

Theorem 47. Let each \mathfrak{A}_i (for $i \in n$ where n is some index set) is a separable poset with least element. Then

$$\forall i \in n: a_i \neq 0 \land \prod^{\mathsf{FCD}} a \sqsubseteq \prod^{\mathsf{FCD}} b \Rightarrow a \sqsubseteq b.$$

Proof. Suppose $a \not\sqsubseteq b$.

 $\prod \mathfrak{A}$ is a separable poset, Thus it exists $y \neq a$ such that $y \approx b$.

We have $\exists i \in n: y_i \not\prec a_i$ and $\forall i \in n: y_i \asymp b_i$.

Take $k \in n$ such that $y_k \not\preccurlyeq a_k$. We have $y_k \preccurlyeq b_k$.

Take $z_i = \begin{cases} a_i & \text{if } i \neq k; \\ y_k & \text{if } i = k \end{cases}$ for $i \in n$.

 $\forall i \in n: z_i \neq a_i \text{ (taken in account that } a_i \neq 0) \text{ and } \exists i \in n: z_i \approx b_i.$

So there exists
$$z$$
 such that $z \in \prod^{\mathsf{FCD}} a$ and $z \notin \prod^{\mathsf{FCD}} b$.
$$\prod^{\mathsf{FCD}} a \not\sqsubseteq \prod^{\mathsf{FCD}} b.$$

Corollary 48. \prod^{FCD} is an order-preserving quasi-cartesian function from the (defined in an obvious way) quasi-cartesian situation of separable posets with least elements to the (defined in an obvious way) quasi-cartesian situation of multifuncoids. [TODO: Write the definitions explicitly.]

Theorem 49. Cross-composition product (for small indexed families of pointfree funcoids between separable atomic posets with least elements and atomistic posets) is an order-preserving quasi-cartesian function from the quasi-cartesian situation \mathfrak{S}_0 of pointfree funcoids over posets with least elements to the quasi-cartesian situation \mathfrak{S}_1 of pointfree funcoids over posets with least elements.

Proof. It follows from the formula (2). [TODO: More detailed proof.]

[TODO: Ordinated product is a quasi-cartesian function with injective aggregation.]

[TODO: Reloidal product is an order-preserving quasi-cartesian function.]

[TODO: Upgrading/downgrading quasi-cartesian functions? This is related with displaced product. First prove that upgrading is injective and that injection composed with a quasi-cartesian function is quasi-cartesian.]