
This is a draft which I will never publish. It is because this theory is unnecessarity comlex but has
no applications.

Quasi-cartesian functions

Above we have defined several different kinds of product. These products resemble cartesian pro-
duct. Saying this formally, these functions are quasi-cartesian as defined below.

First (before formal definitions) I will give an example of a quasi-cartesian function. The first and
the most prominent example is certain quasi-cartesian situation S together with the well known
quasi-cartesian function cartesian product of an indexed family of sets . Below is a quasi-cartesian
situation S:

1. Forms are small sets.

2. Arguments are pairs (℧; r) where ℧ is a form and r∈P℧.

3. The form corresponding to an argument (℧; r) is ℧.

4. Zero for the form ℧ is defined by the formula Z ℧=(℧; ∅).

The quasi-cartesian function f from S to S is defined by the formula

f (λi∈D: (℧i; ri)) =
(

∏

℧i;
∏

ri
)

.

Now proceed to the formal definitions:

Definition 1. A quasi-cartesian situation S is:

1. a set F (forms);

2. a set X (arguments);

3. a function ρ∈FX (forms of arguments);

4. a function Z ∈XF (zeros)

such that ρ ◦Z ◦ ρ= ρ.

Definition 2. The set ZC is the set of such small indexed families of arguments that for every
small indexed family x of arguments

x∈ZC⇔∃i∈dom x:xi=Z(ρ(xi)). (1)

Remark 3. For theorems below we will need only that ZC is a set of indexed families of arguments.
The formula (1) is not required, but there are no need to generalize here.

Let fix two quasi-cartesian situations S0 (source) and S1 (destination).

Definition 4. A pre-quasi-cartesian function is a function f such that the image of f is a subset
of X1 and every element of the domain of f is an indexed family of elements of X0 such that:

1. x∈ZC0⇔ fx=Z1(ρ1 fx) for every x∈ dom f;

2. ρ0 ◦ x= ρ0 ◦ y⇒ ρ1 fx= ρ1 fy for every x, y ∈dom f.
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There exists a function Υ (aggregation) conforming to the formula Υ(ρ0 ◦ x)= ρ1 fx.

A pre-quasi-cartesian function can be described first defining a function Υ from small indexed
families of forms into forms such that ρ1 fx=Υ(ρ0 ◦ x) and x∈ZC0⇔ fx=Z1Υ(ρ0 ◦ x).

Definition 5. A quasi-cartesian function is such pre-quasi-cartesian function f that
f |{x∈X0

domA | ρ0 ◦x=A}\ZC0
is an injection for every indexed family A of forms.

Definition 6. A pre-quasi-cartesian function with injective aggregation is a pre-quasi-cartesian
function for which the Υ function is injective.

Exercise 1. Prove that the above defined “cartesian product of an indexed family of sets” is a quasi-cartesian

function for two quasi-cartesian systems with injective aggregation.

Definition 7. Restriction of a quasi-cartesian situation is this quasi-cartesian situation with the
set of arguments X replaced by a smaller set X ′ such that im Z ⊆X ′ and forms of arguments ρ

replaced with ρ′= ρ|X ′.

Proposition 8. Every restriction of a quasi-cartesian situation is a quasi-cartesian situation.

Proof. We need to prove ρ′ ◦Z ◦ ρ′= ρ′. This formula follows from ρ′= ρ|X and dom ρ′⊇ imZ. �

Definition 9. Restriction of a pre-quasi-cartesian function is the restriction of the source quasi-
cartesian situation, the destination quasi-cartesian situation, together with a restriction of the
quasi-cartesian function to indexed families of the new set of (source) arguments.

Obvious 10. Restriction of a pre-quasi-cartesian function is a pre-quasi-cartesian function.

Obvious 11. Restriction of a quasi-cartesian function is a quasi-cartesian function.

Obvious 12. Restriction of a (pre-)quasi-cartesian situation with injective aggregation is a (pre-
)quasi-cartesian situation with injective aggregation.

When card 〈f 〉{x}=1 for a binary relation f , we will denote f(x) or fx the element of the singleton
〈f 〉{x}.

Proposition 13. For pre-quasi-cartesian function f we have

(〈f 〉{x∈X0
domA | ρ 0◦x=A}) \ {Z1(Υf A)}= 〈f 〉({x∈X0

domA | ρ ◦x=A} \ZC1).

Proof.

〈f 〉({x∈X0
domA | ρ 0◦x=A} \ZC0) =

〈f 〉{x∈X0
domA | ρ 0◦x=A∧ x � ZC0} =

〈f 〉{x∈X0
domA | ρ 0◦x=A∧ fx� Z 1Υf(ρ0 ◦x)} =

〈f 〉{x∈X0
domA | ρ0 ◦x=A∧ fx� Z1Υf A} =

(〈f 〉{x∈X0
domA | ρ0 ◦ x=A}) \ {Z1(Υf A)}.

�

Proposition 14. card 〈f−1〉{y}=1 if y ∈ (〈f 〉{x∈X0
domA | ρ0 ◦ x=A}) \ {Z1(Υf A)}.
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Proof. card 〈f−1〉{y}> 1 is obvious. It remains to show that y [f−1]a∧ y [f−1] b⇒a= b for every

a and b. Really, let y [f−1] a∧ y [f−1] b. Then y= fa and y= fb and thus a= b because

y ∈ 〈f 〉({x∈X0
domA | ρ0 ◦x=A} \ZC0) and f |{x∈X0

dom A | ρ0◦x=A}\ZC0
is an injection. �

Fix quasi-cartesian situations SA, SB, SC and quasi-cartesian functions f : SA → SB and g:
SA→SC such that dom f =dom g. Let A is a small indexed family of forms. [TODO: Check below
formulations (it is possible that I’ve done little errors confusing A, B, and C).]

For a small indexed family A of forms let:

ϕA= g ◦ id{x∈XA
domA | ρA ◦x=A} ◦ f

−1.

Obvious 15. ϕA= g |{x∈XA
domA | ρA◦x=A}◦f

−1= g ◦
(

f |{x∈XA
domA | ρA ◦x=A}

)

−1.

Proposition 16. ϕA is a function and dom ϕA = 〈f 〉{x ∈ XA
domA | ρA ◦ x = A} and for every

y ∈dom ϕA we have

ϕA y=

{

ZC(ΥgA) if y=ZB(Υf A);

g f−1 y if y� ZB(Υf A).

Proof. It follows from the previous proposition. �

Theorem 17. ϕA= g ◦ f−1|〈f 〉{x∈XA
domA | ρA◦x=A}.

Proof. If y ∈ (〈f 〉{x ∈ XA
domA | ρA ◦ x = A}) \ {ZB(Υf A)} then card 〈f−1〉{y} = 1 and thus

〈f 〉{y}∈ {x∈XB
domA | ρB ◦ x=A} \ZCB. Consequently

〈ϕA〉{y}= 〈g ◦ f−1〉{y}=
〈

g ◦ f−1|〈f 〉{x∈XA
dom A | ρA◦x=A}

〉

{y}.

〈ϕA〉{ZB(Υf A)}=ZC(ΥgA) and

〈

g ◦ f−1|〈f 〉{x∈XA
dom A | ρA◦x=A}

〉

{ZC(ΥgA)} =

〈g ◦ f−1〉{ZC(ΥgA)} =

〈g〉({x∈XA
domA | ρA ◦x=A}∩ZCA) =

ZC(ΥgA).

Thus 〈ϕA〉{y}=
〈

g ◦ f−1|〈f 〉{x∈XA
domA | ρA◦x=A}

〉

{y} for every y∈〈f 〉{x∈XA
domA | ρA◦x=A}. �

Theorem 18. ϕA is a bijection

〈f 〉{x∈XA
domA | ρA ◦ x=A}→〈g〉{x∈XA

domA | ρA◦ x=A}.

Proof. That ϕA is a surjection

〈f 〉{x∈XA
domA | ρ0 ◦x=A}→〈g〉{x∈XA

domA | ρ0 ◦ x=A}

follows from a proposition above and symmetry. To prove that it is an injection is enough to show
that:

1. g f−1 y� ZC(ΥgA) if y � ZB(Υf A) for every y ∈dom ϕA.
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2. g ◦ f−1|(〈f 〉{x∈XA
dom A | ρA◦x=A})\{ZB(Υf A)} is injective.

Really,

1. Let y� ZB(ΥfA) for some y∈domϕA. Then f−1 y � ZCA because otherwise fx� ZB(ΥfA)
for some x∈ZCA. Consequently g f−1 y� ZC(ΥgA).

2. f−1|〈f 〉{x∈XA
domA | ρA◦x=A}\{ZB(Υf A)} is obviously injective.

g |〈f−1〉((〈f 〉{x∈XA
dom A | ρA◦x=A})\{ZB(Υf A)}) is injective because f−1 y � ZCA for y �

ZB(Υf A).

Thus g ◦ f−1|(〈f 〉{x∈XA
dom A | ρA◦x=A})\{ZB(Υf A)} is injective. �

As shown by the below theorems, every two quasi-cartesian functions are equivalent up to a
bijection:

Theorem 19. ϕA ◦ f |{x∈XA
dom A | ρA◦x=A}=g |{x∈XA

domA | ρA◦x=A}.

Proof. If x∈{x∈XA
domA | ρA◦x=A}\ZCA then [TODO: Make clear that multivalued functions

are not applied below. Rewrite the proof for clarity.]

(

ϕA ◦ f |{x∈XA
domA | ρA◦x=A}

)

x =

g id{x∈XA
dom A | ρA◦x=A} f

−1 f |{x∈XA
dom A | ρA◦x=A}x =

g id{x∈XA
dom A | ρA◦x=A}x =

gx =
(

g |{x∈XA
dom A | ρA◦x=A}

)

x.

If x∈ {x∈XA
domA | ρA ◦ x=A}∩ZCA then

(

f |{x∈XA
dom A | ρA◦x=A}

)

x=ZBΥf A and
(

g |{x∈XA
domA | ρA◦x=A}

)

x=ZCΥgA;

〈

f−1◦
(

f |{x∈XA
dom A | ρA◦x=A}

)〉

{x}={x∈XA
domA | ρA◦x=A}∩ZCA. Thus it is easy to show that

〈

g ◦ id{x∈XA
domA | ρA◦x=A} ◦ f

−1 ◦
(

f |{x∈XA
domA | ρA◦x=A}

)〉

{x}= {ZCΥgA}. �

Now let also f and g be with injective aggregation.

Let Φ= g ◦ f−1.

Lemma 20. The set of all 〈f 〉{x ∈ X0
domA | ρ0 ◦ x = A}, for A being small indexed families of

forms, is a partition of the set im f where f is a quasi-cartesian function with injective aggregation
S1→S2.

Proof. Let denote this set S. That
⋃

S= im f is obvious.

Suppose A = 〈f 〉{x ∈ X0
domA | ρ0 ◦ x = A0} and B = 〈f 〉{x ∈ X0

domA | ρ0 ◦ x = A1} for families
A0 � A1 of forms. Then for every a ∈A we have a= fx where ρ0 ◦ x=A0. Thus ρ1 a=ΥA0 and
ρ1 b=ΥA1; ρ1 a� ρ1 b; a� b. So S is a disjoint set. �

Theorem 21. Φ is a bijection im f→ im g.

Proof. From the lemma. �
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Theorem 22. Φ ◦ f = g.

Proof. Because Φ ◦ f |〈f 〉{x∈XA
dom A | ρA◦x=A}=g |〈f 〉{x∈XA

dom A | ρA◦x=A} and the lemma. �

Theorem 23.

1. ϕA=Φ|〈f 〉{x∈XA
dom A | ρA◦x=A} for every small indexed family A of forms.

2. Φ is the union of all functions ϕA where A is a small indexed family of forms.

Proof. Both are trivial from the above. �

Definition 24. A product-projection system is a quasi-cartesian function together with a function
Prwhose values are indexed families, such that for every x∈dom f:

x � ZC0⇒Pr fx=x.

[TODO: Also: f(Pr y)= y if y ∈ im f.]

[TODO: Particular product-projection systems.]

Some examples of quasi-cartesian situations and functions

Definition 25. Let C is a category with zero morphisms. The corresponding quasi-cartesian sit-
uation is:

• Forms are pairs of objects.

• Arguments are morphisms.

• Form of an argument x is (Srcx;Dst x).

• Zero for form (A;B) is the zero morphism 0AB.

Let us prove it is really a quasi-cartesian situation.

Proof. We need to prove ρ ◦ Z ◦ ρ= ρ. Really, let f is an argument. Then ρZρf = ρZ (Src f ;
Dst f)= ρ0Src f ,Dst f =(Src f ;Dst f) = ρf . �

The above definition immediately gives rise of quasi-cartesian situations for binary relations (the
category Rel), pointfree funcoids (the category of small pointfree funcoids), reloids (the category
of small reloids).

Definition 26. The quasi-cartesian situation of anchored relations:

• Forms F are small indexed families of sets.

• Arguments are small anchored relations.

• Form of an argument is the arity of anchored relation.
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• Zero Z for a form is the empty relation of that form.

Proposition 27. The quasi-cartesian situation of anchored relations is really a quasi-cartesian
situation.

Proof. We need to prove ρ ◦Z ◦ ρ= ρ. Really let f is an anchored relation of the form A. Then
Zρf is the zero relation of the same form ρf . Consequently ρZρf = ρf . �

Proposition 28. Reindexation product (for small indexed families of relation) is a quasi-cartesian
function with injective aggregation from the quasi-cartesian situation of anchored relations to the
same quasi-cartesian situation.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small
indexed families x, y of anchored relations:

1. x∈ZC⇔
∏(D)

x=Z
(

ρ
∏(D)

x
)

;

2. ρ ◦ x= ρ ◦ y⇒ ρ
∏(D)

x= ρ
∏(D)

y;

that is

1. x∈ZC⇔
∏(D)

x=Z
(

arity
∏(D)

x
)

;

2. arity ◦x= arity ◦ y⇒ arity
∏(D)

x= arity
∏(D)

y;

that is

1. x∈ZC⇔
∏(D)

x=Z
(

arity
∏(D)

x
)

;

2. arity ◦x= arity ◦ y⇒ uncurry(arity ◦ x) =uncurry(arity ◦ y);

but these formulas are obvious.

Next prove that it is a quasi-cartesian function. We need to show that for every indexed family of
sets

(

∏

(D)

x

)

|{x∈Xdom A | ρ◦x=A}\ZC

is injection. This follows from the known fact that (
∏

x)|{x∈Xdom A | ρ◦x=A}\ZC is an injection.

Last, we need to prove that it is with injective aggregation. Define Υ(ρ ◦ x) = ρ
∏(D)

x that is
Υ(arity ◦x)= uncurry(arity ◦x) that is Υp= uncurry p. Obviously this Υ is injective. �

Proposition 29. Ordinated product (for small indexed families of relation) is a quasi-cartesian
function from the quasi-cartesian situation of anchored relations to the same quasi-cartesian situ-
ation.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small
indexed families x, y of anchored relations:

1. x∈ZC⇔
∏(ord)

x=Z
(

ρ
∏(ord)

x
)

;
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2. ρ ◦ x= ρ ◦ y⇒ ρ
∏(ord)

x= ρ
∏(ord)

y;

that is

1. x∈ZC⇔
∏(ord)

x=Z
(

arity
∏(ord)

x
)

;

2. arity ◦x= arity ◦ y⇒ arity
∏(ord)

x= arity
∏(ord)

y;

that is

1. x∈ZC⇔
∏(ord)

x=Z
(

arity
∏(ord)

x
)

;

2. arity ◦x= arity ◦ y⇒
∑

(arity ◦x)=
∑

(arity ◦ y);

but these formulas are obvious.

Next prove that it is a quasi-cartesian function. We need to show that for every indexed family of
sets

(

∏

(D)

x

)

|{x∈Xdom A | ρ◦x=A}\ZC

is injection. This follows from the known fact that (
∏

x)|{x∈Xdom A | ρ◦x=A}\ZC is an injection.
[TODO: More detailed proof.] �

Definition 30. The quasi-cartesian situation of pointfree funcoids over posets with least elements
is:

1. Forms are pairs (A;B) of posets with least elements.

2. Arguments are pointfree funcoids.

3. The form of an argument f is (Src f ;Dst f).

4. Zero of the form (A;B) is 0FCD(A;B)= (A× {0B};B× {0A}). (It exists because A and B

have least elements.)

Proposition 31. It is really a quasi-cartesian situation.

Proof. We need to prove ρ ◦Z ◦ ρ= ρ. Really,

ρZρf = ρZ(Src f ;Dst f) = ρ0FCD(Src f ;Dst f)=(Src f ;Dst f) = ρf. �

Definition 32. The quasi-cartesian situation of binary relations is:

1. Forms are pairs (A;B) of sets.

2. Arguments are Rel-morphisms;

3. The form of an argument f is (Src f ;Dst f).

4. Zero of the form (A;B) is the Rel-morphism (∅;A;B).
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Proposition 33. It is really a quasi-cartesian situation.

Proof. We need to prove ρ ◦Z ◦ ρ= ρ. Really,

ρZρf = ρZ(Src f ;Dst f)= ρ (∅; Src f ;Dst f) = (Src f ;Dst f)= ρf. �

Definition 34. The quasi-cartesian situation of reloids is:

1. Forms are pairs (A;B) of sets.

2. Arguments are reloids.

3. The form of an argument f is (Src f ;Dst f).

4. Zero of the form (A;B) is 0RLD(A;B).

Proposition 35. It is really a quasi-cartesian situation.

Proof. We need to prove ρ ◦Z ◦ ρ= ρ. Really,

ρZρf = ρZ(Src f ;Dst f)= ρ0RLD(Src f ;Dst f)=(Src f ;Dst f)= ρf. �

Next we need to prove that cross-composition product of some particular categories with star-
morphisms are quasi-cartesian functions with injective aggregation.

Theorem 36. Cross-composition product (for small indexed families of relations) is a quasi-carte-
sian function with injective aggregation from the quasi-cartesian situation S0 of binary relations
to the quasi-cartesian situation S1 of pointfree funcoids over posets with least elements.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small
indexed families x, y of Rel-morphisms:

1. x∈ZC0⇔
∏(C)

x=Z1

(

ρ1
∏(C)

x
)

;

2. ρ0 ◦ x= ρ0 ◦ y⇒ ρ1
∏(C)

x= ρ1
∏(C)

y;

∏(C)
x=Z1

(

ρ1
∏(C)

x
)

⇔
∏(C)

x=Z1(FCD(StarHom(λi∈ domx: Srcxi);StarHom(λi∈ domx:

Dst xi))) ⇔
∏(C)

x = 0FCD(StarHom(λi∈dom x:Src xi);StarHom(λi∈dom x:Dstxi)) ⇔ ∀a ∈ StarHom(λi ∈

dom x: Src xi):
〈

∏(C)
x
〉

a = 0StarHom(λi∈dom x:Dstxi) ⇔ ∀a ∈ StarHom(λi ∈ dom x: Src xi):

StarComp(a; x) = 0StarHom(λi∈dom x:Dstxi) ⇔ ∀a ∈ StarHom(λi ∈ dom x: Src xi): GR StarComp(a;
x)= ∅;

∀a∈ StarHom(λi∈domx: Srcxi):GRStarComp(a;x)= ∅⇐x∈ZC0.

∀a ∈ StarHom(λi ∈ dom x: Src xi): GR StarComp(a; x) = ∅ ⇒ GR StarComp
((

dom x;
∏

i∈dom x
Src xi

)

; x
)

= ∅ ⇒ ∄L ∈ ℧arity a∃y ∈
∏

i∈dom x
Src xi∀i ∈ arity a: yi xi Li ⇔

¬∀i∈ arity a∃L∈℧, y ∈ Srcxi: yxiL⇔¬∀i∈ arity a:xi� 0⇔ x∈ZC0.

Thus x∈ZC0⇔
∏(C)

x=Z1

(

ρ1
∏(C)

x
)

.

If ρ0 ◦ x= ρ0 ◦ y then arity x= arity y=n for some index set n.
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ρ0 ◦ x= ρ0 ◦ y⇒ λi ∈ n: (Src x= Src y ∧Dst x=Dst y)⇒ ρ1
∏(C)

x= FCD(StarHom(λi ∈ dom x:
Src xi); StarHom(λi ∈ dom x: Dst xi)) = FCD(StarHom(λi ∈ dom y: Src yi); StarHom(λi ∈ dom y:

Dst yi))= ρ1
∏(C)

y.

We have proved that it is a pre-quasi-cartesian function.

Next prove that it is a quasi-cartesian function, that is

(

∏

(C)
)

|{x∈X0
domA | ρ0 ◦x=A}\ZC0

is an injection for every indexed family A of forms. Let x ∈ {x ∈ X0
domA | ρ0 ◦x = A} \ ZC0. To

prove that it is an injection we will restore the value of x from
∏(C)

x.
〈

∏(C)
x
〉

{p}=StarComp({p};x) for every p∈℧n.

L∈GRStarComp({p};x)⇔∀i∈n: pi xiLi⇔∀i∈n:Li∈ 〈xi〉{pi} for every L∈℧n.

Thus GRStarComp({p};x)=
∏

i∈n
〈xi〉{pi}.

Since xi � 0 there exist p such that 〈xi〉{pi} � 0. Take k ∈ n, pi
′ = pi for i � k and pk = q for an

arbitrary value q; then

〈xk〉{q}=Prk
∏

i∈n

〈xi〉{pi
′}=PrkGRStarComp({p′};x)=PrkGR

〈

∏

(C)

x

〉

{p′}.

So the value of x can be restored from
∏(C)

x by this formula.

It remained to prove that it is with injective aggregation.

We have ΥF =(StarHom(λi∈dom f :Fi,0); StarHom(λi∈ dom f :Fi,1)) for every form F .

It is really an injection because StarHom(−) are disjoint. �

Theorem 37. Cross-composition product (for small indexed families of pointfree funcoids between
separable atomic posets with least elements and atomistic posets) is a quasi-cartesian function
(with injective aggregation) from the quasi-cartesian situation S0 of pointfree funcoids over posets
with least elements to the quasi-cartesian situation S1 of pointfree funcoids over posets with least
elements.

Proof. First prove that it is a pre-quasi-cartesian function. We need to show that for every small
indexed families x, y of pointfree funcoids:

1. x∈ZC0⇔
∏(C)

x=Z1

(

ρ1
∏(C)

x
)

;

2. ρ0 ◦ x= ρ0 ◦ y⇒ ρ1
∏(C)

x= ρ1
∏(C)

y;

∏(C)
x=Z1

(

ρ1
∏(C)

x
)

⇔
∏(C)

x=Z1(FCD(StarHom(λi∈ domx: Srcxi);StarHom(λi∈ domx:

Dst xi))) ⇔
∏(C)

x = 0FCD(StarHom(λi∈dom x:Src xi);StarHom(λi∈dom x:Dstxi)) ⇔ ∀a ∈ StarHom(λi ∈

dom x: Src xi):
〈

∏(C)
x
〉

a = 0StarHom(λi∈dom x:Dstxi) ⇔ ∀a ∈ StarHom(λi ∈ dom x: Src xi):

StarComp(a; x) = 0StarHom(λi∈dom x:Dstxi) ⇔ ∀a ∈ StarHom(λi ∈ dom x: Src xi): GR StarComp(a;
x)= ∅;

∀a∈ StarHom(λi∈domx: Srcxi):GRStarComp(a;x)= ∅⇐x∈ZC0.
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∀a ∈ StarHom(λi ∈ dom x: Src xi): GR StarComp(a; x) = ∅ ⇒ GR StarComp
((

dom x;
∏

i∈dom x
Src xi

)

; x
)

= ∅ ⇒ ∄L ∈ ℧arity a∃y ∈
∏

i∈dom x
Src xi ∩

∏

i∈dom x
atoms Src xi∀i ∈

arity a: yi [xi] Li ⇔ ∄L ∈ ℧arity a∃y ∈
∏

i∈dom x
atoms Src xi∀i ∈ arity a: yi [xi] Li ⇔ ¬

∀i∈ arity a∃L∈℧, y ∈ atoms Srcxi: y [xi]L⇒¬∀i∈ arity a:xi� 0⇔x∈ZC0.

Thus x∈ZC0⇔
∏(C)

x=Z1

(

ρ1
∏(C)

x
)

.

If ρ0 ◦ x= ρ0 ◦ y then arity x= arity y=n for some index set n.

ρ0 ◦ x= ρ0 ◦ y⇒ λi ∈ n: (Src x= Src y ∧Dst x=Dst y)⇒ ρ1
∏(C)

x= FCD(StarHom(λi ∈ dom x:
Src xi); StarHom(λi ∈ dom x: Dst xi)) = FCD(StarHom(λi ∈ dom y: Src yi); StarHom(λi ∈ dom y:

Dst yi))= ρ1
∏(C)

y.

We have proved that it is a pre-quasi-cartesian function.

Next prove that it is a quasi-cartesian function, that is

(

∏

(C)
)

|{x∈X0
domA | ρ0 ◦x=A}\ZC0

is an injection for every indexed family A of forms. Let x ∈ {x ∈ X0
domA | ρ0 ◦x = A} \ ZC0. To

prove that it is an injection we will restore the value of x from
∏(C)

x.
〈

∏(C)
x
〉

p= StarComp(p;x) for every p∈
∏

i∈n
atoms Srcxi.

It is easy to see that GR p∩
∏

i∈n
atoms Srcxi= {p}. Thus

L∈GRStarComp(p;x)⇔∀i∈n: pi [xi]Li⇔∀i∈n:Li∈ 〈xi〉pi for every L∈
∏

i∈n
Srcxi.

Thus GRStarComp(p;x) =
∏

i∈n
〈xi〉pi.

Since xi� 0 there exist p such that 〈xi〉pi� 0. Take k∈n, pi
′= pi for i� k and pk

′ = q for an arbitrary
value q; then

〈xk〉q=Prk
∏

i∈n

〈xi〉pi
′=PrkGRStarComp(p′;x)=PrkGR

〈

∏

(C)

x

〉

p′. (2)

Note that the theorem ?? in [?] applies to every xi.

So the value of x can be restored from
∏(C)

x by this formula.

It remained to prove that it is with injective aggregation.

We have ΥF =(StarHom(λi∈dom f :Fi,0); StarHom(λi∈ dom f :Fi,1)) for every form F .

It is really an injection because StarHom(−) are disjoint. �

Conjecture 38. Cross-composition product (for small indexed families of reloids) is a quasi-
cartesian function (with injective aggregation) from the quasi-cartesian situation S0 of reloids to
the quasi-cartesian situation S1 of pointfree funcoids over posets with least elements.

Remark 39. The above conjecture is unsolved even for product of two multipliers.

Theorem 40. Reloidal product (for small indexed families of filters on powersets) with multireloid
projections is a product-projection system with injective aggregation from the quasi-cartesian situ-
ation S0 of filters to the quasi-cartesian situation S1 of multireloids.
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Ordered quasi-cartesian situations

Definition 41. An ordered quasi-cartesian situation is a quasi-cartesian situation together with a
partial order on each its set of its arguments of each given form.

Definition 42. An order-preserving quasi-cartesian function from a quasi-cartesian situation S0

to a quasi-cartesian situation S1 is a quasi-cartesian function σ such that σx ⊑ σy ⇒ x ⊑ y for

every indexed family A of forms and x, y ∈ {x∈X0
domA | ρ0 ◦x=A} \ZC0.

Obvious 43. Every order-preserving quasi-cartesian function is a quasi-cartesian function with
injective aggregation.

Remark 44. Using the obvious fact above, we can prove again that the considered quasi-cartesian
functions are with injective aggregation using the below proved statements that they are order-
preserving.

Proposition 45. Cross-composition product (for small indexed families of relations) is an order-
preserving quasi-cartesian function from the quasi-cartesian situation S0 of binary relations to the
quasi-cartesian situation S1 of pointfree funcoids over posets with least elements equipped with the
usual orderings of these sets.

Proof. We need to prove ∀i ∈ n: (fi � ∅ ∧ gi � ∅) ∧
∏C

f ⊑
∏C

g⇒ f ⊑ g for every n-indexed
families f and g of binary relations.
〈

∏(C)
f
〉

∏

a=
∏

i∈n
〈fi〉ai.

Fix k ∈n, x∈℧. Let a=℧n\{k}∪{(k;x)}. Then

〈

∏

(C)

f

〉

∏

a=
∏

i∈n

{

〈fi〉℧ if i� k;
〈fk〉{x} if i= k.

and

〈

∏

(C)

g

〉

∏

a=
∏

i∈n

{

〈gi〉℧ if i� k;
〈gk〉{x} if i= k.

Taking into account that 〈fi〉℧� ∅ and 〈gi〉℧� ∅ for every i∈n, by properties of Cartesian product,
we get 〈fk〉{x}⊑ 〈gk〉{x} for every x∈℧ and thus fk ⊑ gk. �

Corollary 46. Cross-composition product (for small indexed families of Rel-morphisms) is an
order-preserving quasi-cartesian function from the quasi-cartesian situation S0 of Rel-morphisms
to the quasi-cartesian situation S1 of pointfree funcoids over posets with least elements.

Theorem 47. Let each Ai (for i ∈ n where n is some index set) is a separable poset with least
element. Then

∀i∈n: ai� 0∧
∏

FCD

a⊑
∏

FCD

b⇒ a⊑ b.

Proof. Suppose a⊑b.
∏

A is a separable poset, Thus it exists y � a such that y≍ b.

We have ∃i∈n: yi� ai and ∀i∈n: yi≍ bi.

Take k ∈n such that yk� ak. We have yk≍ bk.

Take zi=
{

ai if i� k;
yk if i= k

for i∈n.
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∀i∈n: zi� ai (taken in account that ai� 0) and ∃i∈n: zi≍ bi.

So there exists z such that z ∈
∏FCD

a and z � ∏FCD
b.

∏FCD
a⊑
∏FCD

b. �

Corollary 48.
∏FCD is an order-preserving quasi-cartesian function from the (defined in an

obvious way) quasi-cartesian situation of separable posets with least elements to the (defined in an
obvious way) quasi-cartesian situation of multifuncoids. [TODO: Write the definitions explicitly.]

Theorem 49. Cross-composition product (for small indexed families of pointfree funcoids between
separable atomic posets with least elements and atomistic posets) is an order-preserving quasi-
cartesian function from the quasi-cartesian situation S0 of pointfree funcoids over posets with least
elements to the quasi-cartesian situation S1 of pointfree funcoids over posets with least elements.

Proof. It follows from the formula (2). [TODO: More detailed proof.] �

[TODO: Ordinated product is a quasi-cartesian function with injective aggregation.]

[TODO: Reloidal product is an order-preserving quasi-cartesian function.]

[TODO: Upgrading/downgrading quasi-cartesian functions? This is related with displaced pro-
duct. First prove that upgrading is injective and that injection composed with a quasi-cartesian
function is quasi-cartesian.]
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