Multidimensional Funcoids

by Victor Porton
78640, Shay Agnon 32-29, Ashkelon, Israel
Web: http://www.mathematics21.org

Abstract

First I define a product of two funcoids. Then I define multifuncoids and staroids as generalizations of funcoids. Using staroids I define a product of an arbitrary (possibly infinite) family of funcoids and some other products.

1 Draft status

It is a rough draft.
This article is outdated. Read the book instead.

2 Notation

This article presents a generalization of concepts from [T] and [3].
In this article I will use \sqsupseteq to denote order in a poset and \sqcap, \sqcup to denote meets and joins on a semilattice. I reserve \supseteq, \cap, and \cup for set-theoretic supset-relation, intersection, and union.

For a poset \mathfrak{A} I will denote Least (\mathfrak{A}) the set of least elements of \mathfrak{A}. (This set always has either one or zero elements.)

With this notation we do not need the concept of filter objects ([4]), we will use the standard set of filters, but the order \sqsubseteq on the lattice of filters will be opposite the set theoretic inclusion \subseteq of filters.

3 Product of two funcoids

3.1 Lemmas

Lemma 1. Let A, B, C are sets, $f \in \operatorname{FCD}(A ; B), g \in \operatorname{FCD}(B ; C), h \in \operatorname{FCD}(A ; C)$. Then

$$
g \circ f \nsucc h \Leftrightarrow g \nsucc h \circ f^{-1} .
$$

Proof. See [I].
Lemma 2. Let A, B, C are sets, $f \in \operatorname{RLD}(A ; B), g \in \operatorname{RLD}(B ; C), h \in \operatorname{RLD}(A ; C)$. Then

$$
g \circ f \nsucc h \Leftrightarrow g \nsucc h \circ f^{-1} .
$$

Proof. See [I].
Lemma 3. $f \circ\left(\mathcal{A} \times{ }^{\mathrm{FCD}} \mathcal{B}\right)=\mathcal{A} \times{ }^{\mathrm{FCD}}\langle f\rangle \mathcal{B}$ for elements $\mathcal{A} \in \mathfrak{A}$ and $\mathcal{B} \in \mathfrak{B}$ of some posets $\mathfrak{A}, \mathfrak{B}$ with least elements and $f \in \operatorname{FCD}(\mathfrak{A} ; \mathfrak{B})$.

Proof. $\left\langle f \circ\left(\mathcal{A} \times{ }^{\mathrm{FCD}} \mathcal{B}\right)\right\rangle \mathcal{X}=\left(\begin{array}{ll}\langle f\rangle \mathcal{B} & \text { if } \mathcal{X} \neq \mathcal{A} \\ 0 & \text { if } \mathcal{X} \asymp \mathcal{A}\end{array}\right)=\left\langle\mathcal{A} \times{ }^{\mathrm{FCD}}\langle f\rangle \mathcal{B}\right\rangle \mathcal{X}$.

3.2 Definition

Definition 4. I will call a quasi-invertible category a partially ordered dagger category such that it holds

$$
\begin{equation*}
g \circ f \nsucc h \Leftrightarrow g \nprec h \circ f^{\dagger} \tag{1}
\end{equation*}
$$

for every morphisms $f \in \operatorname{Hom}(A ; B), g \in \operatorname{Hom}(B ; C), h \in \operatorname{Hom}(A ; C)$, where A, B, C are objects of this category.

Inverting this formula, we get $f^{\dagger} \circ g^{\dagger} \nsucc h^{\dagger} \Leftrightarrow g^{\dagger} \nsucc f \circ h^{\dagger}$. After replacement of variables, this gives: $f^{\dagger} \circ g \nsucc h \Leftrightarrow g \nprec f \circ h$

As it follows from [I], the category of funcoids and the category of reloids are quasi-invertible (taking $f^{\dagger}=f^{-1}$). Moreover by [3] the category of pointfree funcoids between lattices of filters on boolean lattices are quasi-invertible.

Definition 5. The cross-composition product of morphisms f and g of a quasi-invertible category is the pointfree funcoid $\operatorname{Hom}(\operatorname{Src} f ; \operatorname{Src} g) \rightarrow \operatorname{Hom}(\operatorname{Dst} f ; \operatorname{Dst} g)$ defined by the formulas (for every $a \in \operatorname{Hom}(\operatorname{Src} f ; \operatorname{Src} g)$ and $b \in \operatorname{Hom}($ Dst $f ;$ Dst $g))$:

$$
\left\langle f \times{ }^{(C)} g\right\rangle a=g \circ a \circ f^{\dagger} \quad \text { and } \quad\left\langle\left(f \times^{(C)} g\right)^{-1}\right\rangle b=g^{\dagger} \circ b \circ f .
$$

The cross-composition product is a pointfree funcoid from $\operatorname{Hom}(\operatorname{Src} f ; \operatorname{Src} g)$ to $\operatorname{Hom}(\operatorname{Dst} f ; \operatorname{Dst} g)$.
We need to prove that it is really a pointfree funcoid that is that

$$
b \nsim\left\langle f \times^{(C)} g\right\rangle a \Leftrightarrow a \nprec\left\langle\left(f \times^{(C)} g\right)^{-1}\right\rangle b .
$$

This formula means $b \nsucc g \circ a \circ f^{\dagger} \Leftrightarrow a \nsucc g^{\dagger} \circ b \circ f$ and can be easily proved applying the formula (II) two times.

Proposition 6. $a\left[f \times^{(C)} g\right] b \Leftrightarrow a \circ f^{\dagger} \not \not g^{\dagger} \circ b$.
Proof. From the lemma.
Proposition 7. $a\left[f \times{ }^{(C)} g\right] b \Leftrightarrow f\left[a \times{ }^{(C)} b\right] g$.
Proof. $f\left[a \times{ }^{(C)} b\right] g \Leftrightarrow f \circ a^{\dagger} \not \not b^{\dagger} \circ g \Leftrightarrow a \circ f^{\dagger} \not \not g^{\dagger} \circ b \Leftrightarrow a\left[f \times^{(C)} g\right] b$.
Theorem 8. $\left(f \times{ }^{(C)} g\right)^{\dagger}=f^{\dagger} \times{ }^{(C)} g^{\dagger}$.
Proof. For every funcoids $a \in \operatorname{Hom}(\operatorname{Src} f ; \operatorname{Src} g)$ and $b \in \operatorname{Hom}($ Dst $f ; \operatorname{Dst} g)$ we have:

$$
\begin{aligned}
& \left\langle\left(f \times^{(C)} g\right)^{\dagger}\right\rangle b=g^{\dagger} \circ b \circ f=g^{\dagger} \circ b \circ f=\left\langle f^{\dagger} \times{ }^{(C)} g^{\dagger}\right\rangle b . \\
& \left\langle\left(\left(f \times^{(C)} g\right)^{\dagger}\right)^{\dagger}\right\rangle a=\left\langle f \times{ }^{(C)} g\right\rangle a=g \circ a \circ f^{\dagger}=\left\langle\left(f^{\dagger} \times{ }^{(C)} g^{\dagger}\right)^{\dagger}\right\rangle a .
\end{aligned}
$$

Theorem 9. Let f, g are morphisms of a quasi-invertible category where Dst f and Dst g are f.o. on boolean lattices. Then for every f.o. $\mathcal{A}_{0} \in \mathfrak{F}(\operatorname{Src} f), \mathcal{B}_{0} \in \mathfrak{F}(\operatorname{Src} g)$

$$
\left\langle f \times{ }^{(C)} g\right\rangle\left(\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\right)=\langle f\rangle \mathcal{A}_{0} \times{ }^{\mathrm{FCD}}\langle g\rangle \mathcal{B}_{0} .
$$

Proof. For every atom $a_{1} \times{ }^{\mathrm{FCD}} b_{1}\left(a_{1} \in\right.$ atoms ${ }^{\text {Dst } f}, b_{1} \in$ atoms $^{\mathrm{Dst} ~} g$) of the lattice of funcoids we have: $a_{1} \times{ }^{\mathrm{FCD}} b_{1} \not \not\left\langle\left\langle f \times{ }^{(C)} g\right\rangle\left(\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\right) \Leftrightarrow \mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\left[f \times{ }^{(C)} g\right] a_{1} \times{ }^{\mathrm{FCD}} b_{1} \Leftrightarrow\left(\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\right) \circ f^{\dagger} \not \nsim\right.$ $g^{\dagger} \circ\left(a_{1} \times{ }^{\mathrm{FCD}} b_{1}\right) \Leftrightarrow\langle f\rangle \mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0} \not \not a_{1} \times{ }^{\mathrm{FCD}}\left\langle g^{\dagger}\right\rangle b_{1} \Leftrightarrow\langle f\rangle \mathcal{A}_{0} \not \not a_{1} \wedge\left\langle g^{\dagger}\right\rangle b_{1} \not \not \mathcal{B}_{0} \Leftrightarrow\langle f\rangle \mathcal{A}_{0} \not \not a_{1} \wedge$ $\langle g\rangle \mathcal{B}_{0} \not \not b_{1} \Leftrightarrow\langle f\rangle \mathcal{A}_{0} \times{ }^{\mathrm{FCD}}\langle g\rangle \mathcal{B}_{0} \not \not a_{1} \times{ }^{\mathrm{FCD}} b_{1}$. Thus $\left\langle f \times{ }^{(C)} g\right\rangle\left(\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\right)=\langle f\rangle \mathcal{A}_{0} \times{ }^{\mathrm{FCD}}\langle g\rangle \mathcal{B}_{0}$ because the lattice $\operatorname{FCD}(\mathfrak{F}($ Dst $f) ; \mathfrak{F}($ Dst $g))$ is atomically separable (corollary 64 in [3]).

Proposition 10. $\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\left[f \times{ }^{(C)} g\right] \mathcal{A}_{1} \times{ }^{\mathrm{FCD}} \mathcal{B}_{1} \Leftrightarrow \mathcal{A}_{0}[f] \mathcal{A}_{1} \wedge \mathcal{B}_{0}[g] \mathcal{B}_{1}$ for every $\mathcal{A}_{0} \in \mathfrak{F}(\operatorname{Src} f)$, $\mathcal{A}_{1} \in \mathfrak{F}($ Dst $f), \mathcal{B}_{0} \in \mathfrak{F}(\operatorname{Src} g), \mathcal{B}_{1} \in \mathfrak{F}($ Dst $g)$.

Proof. $\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\left[f \times{ }^{(C)} g\right] \mathcal{A}_{1} \times{ }^{\mathrm{FCD}} \mathcal{B}_{1} \Leftrightarrow \mathcal{A}_{1} \times{ }^{\mathrm{FCD}} \mathcal{B}_{1} \not \nless\left\langle f \times{ }^{(C)} g\right\rangle\left(\mathcal{A}_{0} \times{ }^{\mathrm{FCD}} \mathcal{B}_{0}\right) \Leftrightarrow$ $\mathcal{A}_{1} \times{ }^{\mathrm{FCD}} \mathcal{B}_{1} \not \not\langle f\rangle \mathcal{A}_{0} \times{ }^{\mathrm{FCD}}\langle g\rangle \mathcal{B}_{0} \Leftrightarrow \mathcal{A}_{1} \nsucc\langle f\rangle \mathcal{A}_{0} \wedge \mathcal{B}_{1} \nsucc\langle g\rangle \mathcal{B}_{0} \Leftrightarrow \mathcal{A}_{0}[f] \mathcal{A}_{1} \wedge \mathcal{B}_{0}[g] \mathcal{B}_{1}$.

4 Function spaces of posets

Definition 11. Let \mathfrak{A}_{i} is a family of posets indexed by some set dom \mathfrak{A}. We will define order of families of posets by the formula

$$
a \sqsubseteq b \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}: a_{i} \sqsubseteq b_{i} .
$$

I will call this new poset $\mathfrak{A}=\Pi \mathfrak{A}$ the function space of posets and the above order product order.
Proposition 12. The function space for posets is also a poset.

Proof.

Reflexivity. Obvious.
Antisymmetry. Obvious.
Transitivity. Obvious.
Obvious 13. \mathfrak{A} has least element iff each \mathfrak{A}_{i} has a least element. In this case

$$
\operatorname{Least}(\mathfrak{A})=\prod_{i \in \operatorname{dom} \mathfrak{A}} \operatorname{Least}\left(\mathfrak{A}_{i}\right) .
$$

Proposition 14. $a \nprec b \Leftrightarrow \exists i \in \operatorname{dom~} \mathfrak{A}: a_{i} \not \not \not b_{i}$ for every $a, b \in \prod \mathfrak{A}$.
Proof. $a \nsucc b \Leftrightarrow \exists c \in \prod \mathfrak{A}:(c \sqsubseteq a \wedge c \sqsubseteq b) \Leftrightarrow \exists c \in \prod \mathfrak{A} \forall i \in \operatorname{dom} \mathfrak{A}:\left(c_{i} \sqsubseteq a_{i} \wedge c_{i} \sqsubseteq b_{i}\right) \Leftrightarrow$ $\forall i \in \operatorname{dom} \mathfrak{A} \exists x \in \prod \mathfrak{A}:\left(x \sqsubseteq a_{i} \wedge x \sqsubseteq b_{i}\right) \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}: a_{i} \nsucc b_{i}$.

Proposition 15.

1. If \mathfrak{A}_{i} are join-semilattices then \mathfrak{A} is a join-semilattice and

$$
\begin{equation*}
A \sqcup B=\lambda i \in \operatorname{dom} \mathfrak{A}: A i \sqcup B i . \tag{2}
\end{equation*}
$$

2. If \mathfrak{A}_{i} are meet-semilattices then \mathfrak{A} is a meet-semilattice and

$$
\begin{equation*}
A \sqcap B=\lambda i \in \operatorname{dom} \mathfrak{A}: A i \sqcap B i . \tag{3}
\end{equation*}
$$

Proof. It is enough to prove the formula (2).
It's obvious that $\lambda i \in \operatorname{dom} \mathfrak{A}: A i \sqcup B i \supseteq A, B$.
Let $C \supseteq A, B$. Then (for every $i \in \operatorname{dom} \mathfrak{A}) C i \supseteq A i$ and $C i \supseteq B i$. Thus $C i \supseteq A i \sqcup B i$ that is $C \supseteq \lambda i \in \operatorname{dom} \mathfrak{A}: A i \sqcup B i$.

Corollary 16. If \mathfrak{A}_{i} are lattices then \mathfrak{A} is a lattice.
Obvious 17. If \mathfrak{A}_{i} are distributive lattices then \mathfrak{A} is a distributive lattice.
Obvious 18. If \mathfrak{A}_{i} are (co-)brouwerian lattices then \mathfrak{A} is a (co-)brouwerian lattice.
Proposition 19. If \mathfrak{A}_{i} are boolean lattices then $\Pi \mathfrak{A}$ is a boolean lattice.
Proof. We need to prove only that every element $a \in \prod \mathfrak{A}$ has a complement. But this complement is evidently $\lambda i \in \operatorname{dom} a: \overline{a_{i}}$.

Proposition 20. If \mathfrak{A}_{i} are lattices then for every $S \in \mathscr{P} \prod \mathfrak{A}$

1. $\bigsqcup S=\lambda i \in \operatorname{dom} \mathfrak{A}: \bigsqcup\left\{x_{i} \mid x \in S\right\}$ whenever $\bigsqcup\left\{x_{i} \mid x \in S\right\}$ exists;
2. $\Pi S=\lambda i \in \operatorname{dom} \mathfrak{A}: \Pi\left\{x_{i} \mid x \in S\right\}$ whenever $\Pi\left\{x_{i} \mid x \in S\right\}$ exists.

Proof. It's enough to prove the first formula.
$\left(\lambda i \in \operatorname{dom} \mathfrak{A}: \bigsqcup\left\{x_{i} \mid x \in S\right\}\right)_{i}=\bigsqcup\left\{x_{i} \mid x \in S\right\} \sqsupseteq x_{i}$ for every $x \in S$ and $i \in \operatorname{dom} \mathfrak{A}$.
Let $y \sqsupseteq x$ for every $x \in S$. Then $y_{i} \sqsupseteq x_{i}$ for every $i \in \operatorname{dom} \mathfrak{A}$ and thus $y_{i} \sqsupseteq \bigsqcup\left\{x_{i} \mid x \in S\right\}=$
$\left(\lambda i \in \operatorname{dom} \mathfrak{A}: \bigsqcup\left\{x_{i} \mid x \in S\right\}\right)_{i}$ that is $y \sqsupseteq \lambda i \in \operatorname{dom} \mathfrak{A}: \bigsqcup\left\{x_{i} \mid x \in S\right\}$.
Thus $\bigsqcup S=\lambda i \in \operatorname{dom} \mathfrak{A}: \bigsqcup\left\{x_{i} \mid x \in S\right\}$ by the definition of join.

Corollary 21. If \mathfrak{A}_{i} are complete lattices then \mathfrak{A} is a complete lattice.
Proposition 22. If each \mathfrak{A}_{i} is a separable poset with least element (for some index set n) then $\prod \mathfrak{A}$ is a separable poset.

Proof. Let $a \neq b$. Then $\exists i \in \operatorname{dom} \mathfrak{A}: a_{i} \neq b_{i}$. So $\exists x \in \mathfrak{A}_{i}:\left(x \nsim a_{i} \wedge x \asymp b_{i}\right)$ (or vice versa).
Take $y=(((\operatorname{dom} \mathfrak{A}) \backslash\{i\}) \times\{0\}) \cup\{(i ; x)\}$. Then $y \not \not \neq a$ and $y \asymp b$.
Obvious 23. If every \mathfrak{A}_{i} is a poset with least element 0_{i}, then the set of atoms of $\prod \mathfrak{A}$ is

$$
\left\{\left(\{k\} \times \operatorname{atoms}^{\mathfrak{A}_{k}}\right) \cup\left(\lambda i \in(\operatorname{dom} \mathfrak{A}) \backslash\{k\}: 0_{i}\right) \mid k \in \operatorname{dom} \mathfrak{A}\right\} .
$$

Proposition 24. If every \mathfrak{A}_{i} is an atomistic poset with least element 0_{i}, then $\Pi \mathfrak{A}$ is an atomistic poset.

Proof. $x_{i}=\bigsqcup$ atoms x_{i} for every $x_{i} \in \mathfrak{A}_{i}$. Thus

$$
x=\lambda i \in \operatorname{dom} x: x_{i}=\bigsqcup_{i \in \operatorname{dom} x} \quad \text { atoms } x_{i}=\bigsqcup_{i \in \operatorname{dom} x} \lambda j \in \operatorname{dom} x: \begin{cases}x_{i} & \text { if } j=i \\ 0_{i} & \text { if } j \neq i\end{cases}
$$

Take join two times.
Corollary 25. If \mathfrak{A}_{i} are atomistic complete lattices, then $\Pi \mathfrak{A}$ is atomically separable.
Proof. Proposition 14 in [4].
Proposition 26. Let $\left(\mathfrak{A}_{i \in n} ; \mathfrak{Z}_{i \in n}\right)$ is a family of filtrators. Then $\left(\prod \mathfrak{A} ; \Pi \mathfrak{Z}\right)$ is a filtrator.
Proof. We need to prove that $\Pi \mathfrak{Z}$ is a sub-poset of $\Pi \mathfrak{A}$. First $\Pi \mathfrak{Z} \subseteq \Pi \mathfrak{A}$ because $\mathfrak{Z}_{i} \subseteq \mathfrak{A}_{i}$ for each $i \in n$.

Let $A, B \in \Pi \mathfrak{Z}$ and $A \subseteq \Pi^{\mathfrak{Z}} B$. Then $\forall i \in n: A_{i} \subseteq \mathfrak{Z}^{\mathfrak{Z}_{i}} B_{i}$; consequently $\forall i \in n: A_{i} \subseteq^{\mathfrak{A}_{i}} B_{i}$ that is $A \subseteq \Pi^{\mathfrak{A}} B$.

Proposition 27. Let $\left(\mathfrak{A}_{i \in n} ; \mathfrak{Z}_{i \in n}\right)$ is a family of filtrators.

1. The filtrator ($\Pi \mathfrak{A} ; \Pi \mathfrak{Z}$) is (finitely) join-closed if every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is (finitely) join-closed.
2. The filtrator ($\Pi \mathfrak{A} ; \Pi \mathfrak{Z}$) is (finitely) meet-closed if every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is (finitely) meet-closed.

Proof. Let every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is finitely join-closed. Let $A, B \in \Pi \mathfrak{Z}$. Then $A \sqcup^{\mathfrak{Z}} B=\lambda \in n$: $A_{i} \square^{\mathfrak{Z}^{i}} B_{i}=\lambda \in n: A_{i} \sqcup^{\mathfrak{A}_{i}} B_{i}=A \sqcup^{\mathfrak{A}} B$.

Let now every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is finitely join-closed. Let $S \in \mathscr{P} \Pi \mathfrak{J}$. Then $\bigsqcup^{\Pi \mathfrak{3}} S=\lambda i \in \operatorname{dom} \mathfrak{A}$: $\bigsqcup^{\mathfrak{Z}_{i}}\left\{x_{i} \mid x \in S\right\}=\lambda i \in \operatorname{dom} \mathfrak{A}: \bigsqcup^{\mathfrak{A}_{i}}\left\{x_{i} \mid x \in S\right\}=\bigsqcup^{\Pi \mathfrak{A}} S$.

The rest follows from symmetry.
Proposition 28. If each $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ where $i \in n$ (for some index set n) is a down-aligned filtrator with separable core (for some index set n) then $(\Pi \mathfrak{A} ; \Pi \mathfrak{Z})$ is with separable core.

Proof. Let $a \neq b$. Then $\exists i \in n: a_{i} \neq b_{i}$. So $\exists x \in \mathfrak{Z}_{i}:\left(x \nsim a_{i} \wedge x \asymp b_{i}\right)$ (or vice versa).
Take $y=((n \backslash\{i\}) \times\{0\}) \cup\{(i ; x)\}$. Then we have $y \nprec a$ and $y \asymp b$ and $y \in \mathfrak{Z}$.
Proposition 29. Let every \mathfrak{A}_{i} is a bounded lattice. Every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a central filtrator iff ($\Pi \mathfrak{A}$; $\prod \mathfrak{Z}$) is a central filtrator.

Proof. $x \in Z(\Pi \mathfrak{A}) \Leftrightarrow \exists y \in \Pi \mathfrak{A}:\left(x \sqcap y=0^{\Pi \mathfrak{A}} \wedge x \sqcup y=1^{\Pi \mathfrak{A}}\right) \Leftrightarrow \exists y \in \Pi \mathfrak{A} \forall i \in \operatorname{dom} \mathfrak{A}:$ $\left(x_{i} \sqcap y_{i}=0^{\mathfrak{A}_{i}} \wedge x_{i} \sqcup y_{i}=1^{\mathfrak{A}_{i}}\right) \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A} \exists y \in \mathfrak{A}_{i}:\left(x_{i} \sqcap y_{i}=0^{\mathfrak{A}_{i}} \wedge x_{i} \sqcup y_{i}=1^{\mathfrak{A}_{i}}\right) \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}:$ $x_{i} \in Z\left(\mathfrak{A}_{i}\right)$.

Proposition 30. For every element a of a product filtrator ($\Pi \mathfrak{A} ; \Pi \mathfrak{Z}$):

1. $\operatorname{up} a=\prod_{i \in \operatorname{dom} a}$ up $a_{i} ;$
2. down $a=\prod_{i \in \operatorname{dom} a}$ down a_{i}.

Proof. We will prove only the first as the second is dual.
$\operatorname{up} a=\left\{c \in \prod \mathfrak{Z} \mid c \sqsupseteq a\right\}=\left\{c \in \prod \mathfrak{Z} \mid \forall i \in \operatorname{dom} a: c_{i} \sqsupseteq a_{i}\right\}=\left\{c \in \prod \mathfrak{Z} \mid \forall i \in \operatorname{dom} a:\right.$ $\left.c_{i} \in \operatorname{up} a_{i}\right\}=\prod_{i \in \operatorname{dom} a} \operatorname{up} a_{i}$.

Proposition 31. If every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a filtered complete lattice filtrator, then $\left(\prod \mathfrak{A} ; \prod \mathfrak{Z}\right)$ is a filtered complete lattice filtrator.

Proof. That $\Pi \mathfrak{A}$ is a complete lattice is already proved above. We have for every $a \in \Pi \mathfrak{A}$ $\Pi^{\Pi \mathfrak{A}}$ up $a=\lambda i \in \operatorname{dom} \mathfrak{A}: \Pi\left\{x_{i} \mid x \in \operatorname{up} a\right\}=\lambda i \in \operatorname{dom} \mathfrak{A}: \Pi\left\{x \mid x \in\right.$ up $\left.a_{i}\right\}=\lambda i \in \operatorname{dom} \mathfrak{A}:$ \rceil up $a_{i}=\lambda i \in \operatorname{dom~} \mathfrak{A}: a_{i}=a$.

Obvious 32. If every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a prefiltered complete lattice filtrator, then ($\left.\Pi \mathfrak{A} ; \prod \mathfrak{Z}\right)$ is a prefiltered complete lattice filtrator.

Proposition 33. Let \mathfrak{A}_{i} is a non-empty poset. Every $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a semifiltered complete lattice filtrator iff ($\Pi \mathfrak{A} ; \Pi \mathfrak{Z}$) is a semifiltered complete lattice filtrator.

Proof. up $a \supseteq \operatorname{up} b \Leftrightarrow \lambda i \in \operatorname{dom~} \mathfrak{A}: \operatorname{up} a_{i} \supseteq \operatorname{up} b_{i} \Rightarrow \lambda i \in \operatorname{dom} \mathfrak{A}: a_{i} \sqsubseteq b_{i} \Leftrightarrow a \sqsubseteq b$ for every $a, b \in \prod \mathfrak{A}$ (used the fact that up $a_{i} \neq 0$ because up is injective).

Proposition 34. Let $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ are filtrators and each \mathfrak{Z}_{i} is a complete lattice. For $a \in \prod \mathfrak{A}$:

1. $\operatorname{Cor} a=\lambda i \in \operatorname{dom} a: \operatorname{Cor} a_{i}$;
2. $\operatorname{Cor}^{\prime} a=\lambda i \in \operatorname{dom} a:$ Cor $^{\prime} a_{i}$.

Proof. We will prove only the first, because the second is dual.
$\operatorname{Cor} a=\Pi^{\Pi 3}$ up $a=\lambda i \in \operatorname{dom} a: \Pi^{3_{i}}\left\{x_{i} \mid x \in \operatorname{up} a\right\}=\lambda i \in \operatorname{dom} a: \Pi^{3_{i}}\left\{x \mid x \in \operatorname{up} a_{i}\right\}=\lambda i \in \operatorname{dom} a:$ $\prod^{\mathfrak{\beta}_{i}} \operatorname{up} a_{i}=\lambda i \in \operatorname{dom} a:$ Cor a_{i}.

Proposition 35. If each $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a filtrator with (co-)separable core, then ($\left.\Pi \mathfrak{A} ; \prod \mathfrak{Z}\right)$ is a filtrator with (co-)separable core

Proof. We will prove only for separable core, as co-separable core is dual.
$x \asymp \Pi^{\mathfrak{A}} y \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}: x_{i} \asymp^{\mathfrak{A}_{i}} y_{i} \Rightarrow \forall i \in \operatorname{dom} \mathfrak{A} \exists X \in \operatorname{up} x_{i}: X \asymp^{\mathfrak{A}_{i}} y_{i} \Leftrightarrow \exists X \in \operatorname{up} x \forall i \in \operatorname{dom} \mathfrak{A}:$ $X_{i} \asymp^{\mathfrak{A}_{i}} y_{i} \Leftrightarrow \exists X \in \operatorname{up} x: X \asymp \Pi^{\mathfrak{A}} y$ for every $x, y \in \Pi \mathfrak{A}$.

Obvious 36

1. If each $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a down-aligned filtrator, then $\left(\prod \mathfrak{A} ; \prod \mathfrak{Z}\right)$ is a down-aligned filtrator.
2. If each $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is an up-aligned filtrator, then $\left(\prod \mathfrak{A} ; \Pi \mathfrak{Z}\right)$ is an up-aligned filtrator.

Proposition 37. If every b_{i} is substractive from a_{i} where a and b are n-indexed families of distributive lattices with least elements (where n is an index set), then $a \backslash b=\lambda i \in n$: $a_{i} \backslash b_{i}$.

Proof. We need to prove $\left(\lambda i \in n: a_{i} \backslash b_{i}\right) \sqcap b=0$ and $a \sqcup b=b \sqcup\left(\lambda i \in n: a_{i} \backslash b_{i}\right)$.
Really, $\left(\lambda i \in n: a_{i} \backslash b_{i}\right) \sqcap b=\lambda i \in n:\left(a_{i} \backslash b_{i}\right) \sqcap b_{i}=0$ and $b \sqcup\left(\lambda i \in n: a_{i} \backslash b_{i}\right)=\lambda i \in n:$ $b_{i} \sqcup\left(a_{i} \backslash b_{i}\right)=\lambda i \in n: b_{i} \sqcup a_{i}=a \sqcup b$.

Proposition 38. If every \mathfrak{A}_{i} is a distributive lattice, then $a \backslash^{*} b=\lambda i \in \operatorname{dom} \mathfrak{A}: a_{i} \backslash^{*} b_{i}$ for every a, $b \in \prod \mathfrak{A}$ whenever every $a_{i} \backslash^{*} b_{i}$ is defined.

Proof. We need to prove that $\left.\lambda i \in \operatorname{dom} \mathfrak{A}: a_{i} \backslash^{*} b_{i}=\right\rceil\left\{z \in \prod \mathfrak{A} \mid a \sqsubseteq b \sqcup z\right\}$.
To prove it is enough to show $a_{i} \backslash^{*} b_{i}=\Pi\left\{z_{i} \mid z \in \prod \mathfrak{A}, a \sqsubseteq b \sqcup z\right\}$ that is $a_{i} \backslash^{*} b_{i}=$ $\rceil\left\{z \in \mathfrak{A}_{i} \mid a_{i} \sqsubseteq b_{i} \sqcup z\right\}$ what is true by definition

Proposition 39. If every \mathfrak{A}_{i} is a distributive lattice with least element, then $a \# b=\lambda i \in \operatorname{dom} \mathfrak{A}$: $a_{i} \# b_{i}$ for every $a, b \in \prod \mathfrak{A}$ whenever every $a_{i} \# b_{i}$ is defined.

Proof. We need to prove that $\left.\lambda i \in \operatorname{dom} \mathfrak{A}: a_{i} \# b_{i}=\right\rceil\left\{z \in \prod \mathfrak{A} \mid z \sqsubseteq a \wedge z \asymp b\right\}$.
To prove it is enough to show $a_{i} \# b_{i}=\prod\left\{z_{i} \mid z \in \prod \mathfrak{A}, z \sqsubseteq a \wedge z \asymp b\right\}$ that is $a_{i} \# b_{i}=$ $\Pi\left\{z \in \mathfrak{A}_{i} \mid z \sqsubseteq a_{i} \wedge \forall j \in \operatorname{dom} \mathfrak{A}: z_{j} \asymp b_{j}\right\}$ that is $a_{i} \# b_{i}=\Pi\left\{z \in \mathfrak{A}_{i} \mid z \sqsubseteq a_{i} \wedge z \asymp b_{i}\right\}$ (take $z_{i}=0$ for $j \neq i)$ what is true by definition.

Proposition 40. Let every \mathfrak{A}_{i} is a poset with least element and a_{i}^{*} is defined. Then $a^{*}=\lambda i \in n: a_{i}^{*}$.
Proof. We need to prove that $\lambda i \in \operatorname{dom} \mathfrak{A}: a_{i}^{*}=\bigsqcup\{c \in \mathfrak{A} \mid c \asymp a\}$. To prove this it is enough to show that $a_{i}^{*}=\bigsqcup\left\{c_{i} \mid c \in \mathfrak{A}, c \asymp a\right\}$ that is $a_{i}^{*}=\bigsqcup\left\{c_{i} \mid c \in \mathfrak{A}, \forall j \in n: c_{j} \asymp a_{j}\right\}$ that is $a_{i}^{*}=\bigsqcup\left\{c_{i} \mid c \in \mathfrak{A}\right.$, $\left.c_{i} \asymp a_{i}\right\}$ (take $c_{i}=0$ for $j \neq i$) that is $a_{i}^{*}=\bigsqcup\left\{c \in \mathfrak{A} \mid c \asymp a_{i}\right\}$ what is true by definition.

Corollary 41. Let every \mathfrak{A}_{i} is a poset with least element and a_{i}^{+}is defined. Then $a^{+}=\lambda i \in n: a_{i}^{+}$.
Proof. By duality.

5 Definition of staroids

Let n be a set. As an example, n may be an ordinal, n may be a natural number, considered as a set by the formula $n=\{0, \ldots, n-1\}$. Let $\mathfrak{A}=\mathfrak{A}_{i \in n}$ is a family of posets indexed by the set n.

Definition 42. I will call an anchored relation a pair $f=($ form $f ; \operatorname{GR} f)$ of a family form (f) of sets indexed by the some index set and a relation $\operatorname{GR}(f) \in \mathscr{P} \Pi$ form (f). I call $\operatorname{GR}(f)$ the graph of the anchored relation f. I denote $\operatorname{Anch}(\mathfrak{A})$ the set of small anchored relations of the form \mathfrak{A}.

Definition 43. An anchored relation on powersets is an anchored relation f such that every $(\text { form } f)_{i}$ is a powerset.

I will denote arity $f=\operatorname{dom}$ form f.
Definition 44. Every set of anchored relations of the same form constitutes a poset by the formula $f \sqsubseteq g \Leftrightarrow \mathrm{GR} f \subseteq \mathrm{GR} g$.

Definition 45. An anchored relation is an anchored relation between posets when every $(\text { form } f)_{i}$ is a poset.

Definition 46. Let f is an anchored relation. For every $i \in$ arity f and $L \in \prod\left(\left.(\right.$ form $\left.f)\right|_{(\operatorname{arity} f) \backslash\{i\}}\right)$

$$
(\operatorname{val} f)_{i} L=\left\{X \in(\text { form } f)_{i} \mid L \cup\{(i ; X)\} \in \operatorname{GR} f\right\}
$$

("val" is an abbreviation of the word "value".)
Obvious 47. $X \in(\operatorname{val} f)_{i} L \Leftrightarrow L \cup\{(i ; X)\} \in \operatorname{GR} f$.
Proposition 48. f can be restored knowing form (f) and $(\operatorname{val} f)_{i}$ for some $i \in n$.
Proof. GR $f=\{K \in \Pi$ form $f \mid K \in \operatorname{GR} f\}=\left.\left\{L \cup\{(i ; X)\} \mid L \in \prod\right.$ (form $\left.f\right)\right|_{(\operatorname{arity} f) \backslash\{i\}}$, $\left.X \in(\text { form } f)_{i}, L \cup\{(i ; X)\} \in \operatorname{GR} f\right\}=\left\{L \cup\{(i ; X)\} \mid\left. L \in \prod(\right.$ form $\left.f)\right|_{(\operatorname{arity} f) \backslash\{i\}}, X \in(\operatorname{val} f)_{i} L\right\}$.

Definition 49. A pre-staroid is an anchored relation f between poset such that $(\operatorname{val} f)_{i} L$ is a free star for every $i \in \operatorname{arity} f,\left.L \in \prod($ form $f)\right|_{(\operatorname{arity} f) \backslash\{i\}}$.

Definition 50. A staroid is a pre-staroid whose graph is an upper set (on the poset if anchored relations of the form of this pre-staroid).

Proposition 51. If $L \in \prod$ form f and $L_{i}=0^{(\text {form } f)_{i}}$ for some $i \in$ arity f then $L \notin f$ if f is an prestaroid.

Proof. Let $K=\left.L\right|_{(\operatorname{arity} f) \backslash\{i\}}$. We have $0 \notin(\operatorname{val} f)_{i} K ; K \cup\{(i ; 0)\} \notin f ; L \notin f$.

Definition 52. Infinitary pre-staroid is such a staroid whose arity is infinite; finitary pre-staroid is such a staroid whose arity is finite.

Next we will define completary staroids. First goes the general case, next simpler case for the special case of join-semilattices instead of arbitrary posets.

Definition 53. A completary staroid is a poset relation conforming to the formulas:

1. $\forall K \in \prod$ form $f:\left(K \sqsupseteq L_{0} \wedge K \sqsupseteq L_{1} \Rightarrow K \in \mathrm{GR} f\right) \Leftrightarrow \exists c \in\{0,1\}^{n}:\left(\lambda i \in n: L_{c(i)} i\right) \in \mathrm{GR} f$ for every $L_{0}, L_{1} \in \Pi$ form f.
2. If $L \in \prod$ form f and $L_{i}=0^{(\text {form } f)_{i}}$ for some $i \in$ arity f then $L \notin f$.

Lemma 54. Every completary staroid is an upper set.
Proof. Let f is a completary staroid. Let $L_{0} \sqsubseteq L_{1}$ for some $L_{0}, L_{1} \in \prod$ form f and $L_{0} \in f$. Then taking $c=n \times\{0\}$ we get $\lambda i \in n$: $L_{c(i)} i=\lambda i \in n$: $L_{0} i=L_{0} \in f$ and thus $L_{1} \in f$ because $L_{1} \sqsupseteq L_{0} \wedge L_{1} \sqsupseteq L_{1}$.

Proposition 55. A relation between posets whose form is a family of join-semilattices is a completary staroid iff both:

1. $L_{0} \sqcup L_{1} \in \operatorname{GR} f \Leftrightarrow \exists c \in\{0,1\}^{n}:\left(\lambda i \in n: L_{c(i)} i\right) \in \mathrm{GR} f$ for every $L_{0}, L_{1} \in \Pi$ form f.
2. If $L \in \prod$ form f and $L_{i}=0^{(\text {form } f)_{i}}$ for some $i \in$ arity f then $L \notin f$.

Proof. Let the formulas (1) and (2) hold. Then f is an upper set: Let $L_{0} \sqsubseteq L_{1}$ for some L_{0}, $L_{1} \in \prod$ form f and $L_{0} \in f$. Then taking $c=n \times\{0\}$ we get $\lambda i \in n$: $L_{c(i)} i=\lambda i \in n$: $L_{0} i=L_{0} \in f$ and thus $L_{1}=L_{0} \sqcup L_{1} \in f$.

Thus to finish the proof it is enough to show that

$$
L_{0} \sqcup L_{1} \in \mathrm{GR} f \Leftrightarrow \forall K \in \prod \text { form } f:\left(K \sqsupseteq L_{0} \wedge K \sqsupseteq L_{1} \Rightarrow K \in \mathrm{GR} f\right)
$$

under condition that GR f is an upper set. But this is obvious.
Proposition 56. A completary staroid is a staroid.
Proof. Let f is a completary staroid.
Let $K \in \prod_{i \in(\text { arity } f) \backslash\{i\}}(\text { form } f)_{i}$. Let $L_{0}=K \cup\left\{\left(i ; X_{0}\right)\right\}, L_{1}=K \cup\left\{\left(i ; X_{1}\right)\right\}$ for some X_{0}, $X_{1} \in \mathfrak{A}_{i}$. Then $X_{0} \sqcup X_{1} \in(\operatorname{val} f)_{i} K \Leftrightarrow L_{0} \sqcup L_{1} \in \operatorname{GR} f \Leftrightarrow \exists k \in\{0,1\}: K \cup\left\{\left(i ; X_{k}\right)\right\} \in \mathrm{GR} f \Leftrightarrow K \cup\{(i ;$ $\left.\left.X_{0}\right)\right\} \in f \vee K \cup\left\{\left(i ; X_{1}\right)\right\} \in \operatorname{GR} f \Leftrightarrow X_{0} \in(\operatorname{val} f)_{i} K \vee X_{1} \in(\operatorname{val} f)_{i} K$.

So (val $f)_{i} K$ is a free star (taken in account that $\left.K_{i}=0^{(\text {form } f)_{i}} \Rightarrow f \notin K\right)$.
f is an upper set by the lemma.
Lemma 57. Every finitary pre-staroid is completary.
Proof. $\exists c \in\{0,1\}^{n}:\left(\lambda i \in n: L_{c(i)} i\right) \in \mathrm{GR} f \Leftrightarrow \exists c \in\{0,1\}^{n-1}:\left(\left\{\left(n-1 ; L_{0}(n-1)\right)\right\} \cup(\lambda i \in n-1\right.$: $\left.\left.L_{c(i)} i\right)\right) \in \mathrm{GR} f \vee\left(\left\{\left(n-1 ; L_{1}(n-1)\right)\right\} \cup\left(\lambda i \in n-1: L_{c(i)} i\right)\right) \in \mathrm{GR} f \Leftrightarrow \exists c \in\{0,1\}^{n-1}$: $L_{0}(n-1) \in(\operatorname{val} f)_{n-1}\left(\lambda i \in n-1: L_{c(i)} i\right) \vee L_{1}(n-1) \in(\operatorname{val} f)_{n-1}\left(\lambda i \in n-1: L_{c(i)} i\right) \Leftrightarrow \exists c \in\{0$, $1\}^{n-1} \forall K \in \prod$ form $f:\left(K \sqsupseteq L_{0}(n-1) \vee K \sqsupseteq L_{1}(n-1) \Rightarrow K \in(\operatorname{val} f)_{n-1}\left(\lambda i \in n-1: L_{c(i)} i\right)\right) \Leftrightarrow \exists c \in\{0$, $1\}^{n-1} \forall K_{n-1} \in(\text { form } f)_{n-1}:\left(K_{n-1} \sqsupseteq L_{0}(n-1) \vee K_{n-1} \sqsupseteq L_{1}(n-1) \Rightarrow\{(n-1 ; K)\} \cup(\lambda i \in n-1\right.$: $\left.\left.L_{c(i)} i\right)\right) \in \operatorname{GR} f \Leftrightarrow \ldots \Leftrightarrow \forall K \in \prod$ form $f:\left(K \sqsupseteq L_{0} \wedge K \sqsupseteq L_{1} \Rightarrow K \in \operatorname{GR} f\right)$.

Exercise 1. Prove the simpler special case of the above theorem when the form is a family of join-semilattices.
Theorem 58. For finite arity the following are the same:

1. pre-staroids;
2. staroids;
3. completary staroids.

Proof. f is a finitary pre-staroid $\Rightarrow f$ is a finitary completary staroid.
f is a finitary completary staroid $\Rightarrow f$ is a finitary staroid.
f is a finitary staroid $\Rightarrow f$ is a finitary pre-staroid.
Definition 59. We will denote the set of staroids, pre-staroids, and completary staroids of a form \mathfrak{A} correspondingly as $\operatorname{Strd}(\mathfrak{A}), \operatorname{pStrd}(\mathfrak{A})$, and cStrd (\mathfrak{A}).

6 Upgrading and downgrading a set regarding a filtrator

Let fix a filtrator $(\mathfrak{A} ; \mathfrak{Z})$.
Definition 60. $\downarrow \downarrow f=f \cap \mathfrak{Z}$ for every $f \in \mathscr{P} \mathfrak{A}$ (downgrading f).
Definition 61. $\uparrow \uparrow f=\{L \in \mathfrak{A} \mid$ up $L \subseteq f\}$ for every $f \in \mathscr{P} \mathfrak{Z}$ (upgrading f).
Obvious 62. $a \in \uparrow \uparrow f \Leftrightarrow \operatorname{up} a \subseteq f$ for every $f \in \mathscr{P} \mathfrak{Z}$ and $a \in \mathfrak{A}$.
Proposition 63. $\downarrow \downarrow \uparrow f=f$ if f is an upper set.
Proof. $\downarrow \downarrow \uparrow \uparrow=\uparrow \uparrow f \cap \mathfrak{Z}=\{L \in \mathfrak{Z} \mid$ up $L \subseteq f\}=\{L \in \mathfrak{Z} \mid$ up $L \in f\}=f \cap \mathscr{P} \mathfrak{Z}=f$.

6.1 Upgrading and downgrading staroids

Let fix a family $(\mathfrak{A} ; \mathfrak{Z})$ of filtrators.
For a graph f of a staroid define $\downarrow \downarrow f$ and $\uparrow \uparrow f$ taking the filtrator of $\left(\prod \mathfrak{A} ; \Pi \mathfrak{Z}\right)$.
For a staroid f define:

$$
\begin{array}{llll}
\text { form } \downarrow f=\mathfrak{Z} & \text { and } & \text { GR } \downarrow f=\downarrow \mathrm{GR} f ; \\
\text { form } \uparrow f f=\mathfrak{A} & \text { and } & \operatorname{GR} \uparrow f=\uparrow \uparrow \operatorname{GR} f .
\end{array}
$$

Proposition 64. $(\operatorname{val} \downarrow \downarrow f))_{i} L=(\operatorname{val} f)_{i} L \cap \mathfrak{Z}_{i}$ for every $\left.L \in \prod \mathfrak{Z}\right|_{(\text {arity } f) \backslash\{i\}}$.
Proof. (val $\downarrow f))_{i} L=\left\{X \in(\text { form } f)_{i} \mid L \cup\{(i ; X)\} \in \mathrm{GR} f \cap \prod \mathfrak{Z}\right\}=\left\{X \in \mathfrak{Z}_{i} \mid L \cup\{(i\right.$; $X)\} \in \operatorname{GR} f\}=(\operatorname{val} f)_{i} L \cap \mathfrak{Z}_{i}$.

Proposition 65. Let $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ are finitely join-closed filtrators with both the base and the core being join-semilattices. If f is a staroid of the form \mathfrak{A}, then $\downarrow f$ is a staroid of the form \mathfrak{Z}.

Proof. Let f is a a staroid.
We need to prove that $(\operatorname{val} \downarrow f)_{i} L$ is a free star. It follows from the last proposition and the fact that it is join-closed.

Proposition 66. $\Pi^{\text {Strd }} a=\uparrow \uparrow \downarrow \prod^{\text {Strd }} a$ if each $a_{i} \in \mathfrak{A}_{i}$ (for $i \in n$ where n is some index set) where \mathfrak{A}_{i} is a separable poset with least element.

Proof. $\uparrow \uparrow \downarrow \prod^{\text {Strd }} a=\left\{L \in \prod \mathfrak{A} \mid L \subseteq \prod^{\text {Strd }} a\right\}=\left\{L \in \prod \mathfrak{A} \mid \forall K \in L: K \notin a\right\}=$ $\{L \in \Pi \mathfrak{A} \mid L \nsucc a\}=\Pi^{\text {Strd }} a$ (taken into account that $\Pi \mathfrak{A}$ is a separable poset).

6.2 Displacement

Definition 67. Let f is an indexed family of pointfree funcoids. The displacement of the prestaroid

$$
p \in A=\operatorname{pStrd}\left(\lambda i \in \operatorname{dom} f: \operatorname{FCD}\left(\operatorname{Src} f_{i} ; \operatorname{Src} g_{i}\right)\right)
$$

is defined as a staroid

$$
q \in B=\operatorname{pStrd}\left(\lambda i \in \operatorname{dom} f: \operatorname{RLD}\left(\operatorname{Src} f_{i} ; \operatorname{Src} g_{i}\right)\right)
$$

such that

$$
q=\uparrow^{\left(B ; C ; \uparrow^{B}\right)} \downarrow^{\left(A ; C ; \uparrow^{A}\right)} p
$$

where $C=\operatorname{pStrd}\left(\prod_{i \in \operatorname{dom} f} \operatorname{Src} f_{i} ; \prod_{i \in \operatorname{dom} f} \operatorname{Dst} f_{i}\right)$.
Definition 68. We will define displaced product of a family f of funcoids by the formula: $\Pi^{(\mathrm{DP})} f=\mathrm{DP}\left(\Pi^{(C)} f\right)$.

Remark 69. The interesting aspect of displaced product of funcoids is that displaced product of pointfree funcoids is a funcoid (not just a pointfree funcoid).

7 Multifuncoids

Definition 70. I call an pre-multifuncoid sketch f of the form \mathfrak{A} (where every \mathfrak{A}_{i} is a poset) the pair $(\mathfrak{A} ; \alpha)$ where for every $i \in \operatorname{dom} \alpha$

$$
\alpha_{i}:\left.\prod \mathfrak{A}\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{i\}} \rightarrow \mathfrak{A}_{i} .
$$

I denote $\langle f\rangle=\alpha$.
Definition 71. A pre-multifuncoid sketch on powersets is a pre-multifuncoid sketch such that every \mathfrak{A}_{i} is the set of filters on a powerset.

Definition 72. I will call a pre-multifuncoid a pre-multifuncoid sketch such that for every i, $j \in \operatorname{dom} \mathfrak{A}$ and $L \in \Pi \mathfrak{A}$

$$
\begin{equation*}
\left.\left.L_{i} \not \not \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{j} \not \not \alpha_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} . \tag{4}
\end{equation*}
$$

Definition 73. Let \mathfrak{A} is an indexed family of starrish posets. The pre-staroid corresponding to a pre-multifuncoid f is $[f]$ defined by the formula:

$$
\text { form }[f]=\mathfrak{A} \quad \text { and } \quad L \in \mathrm{GR}[f] \Leftrightarrow L_{i} \not \not\left\langle\left.\langle f\rangle_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} .\right.
$$

Proposition 74. The pre-staroid corresponding to a pre-multifuncoid is really a pre-staroid.
Proof. By the definition of starrish posets.
Definition 75. I will call a multifuncoid a pre-multifuncoid to which corresponds a staroid.
Definition 76. I will call a completary multifuncoid a pre-multifuncoid to which corresponds a completary staroid.

Theorem 77. Fix some indexed family \mathfrak{A} of boolean lattices. The the set of multifuncoids g bijectively corresponds to set of pre-staroids f of form \mathfrak{A} by the formulas:

1. $f=[g]$ for every $i \in \operatorname{dom} \mathfrak{A}, L \in \prod \mathfrak{A}$;
2. $\partial\langle g\rangle_{i} L=(\operatorname{val} f)_{i} L$.

Proof. Let f is a pre-staroid of the form \mathfrak{A}. If α is defined by the formula $\alpha_{i} L=\langle f\rangle_{i} L$ then $\partial \alpha_{i} L=(\operatorname{val} f)_{i} L$. Then

$$
\left.\left.L_{i} \not \not \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L \in f \Leftrightarrow L_{j} \not \not \alpha_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} .
$$

For the staroid f^{\prime} defined by the formula $\left.L \in f^{\prime} \Leftrightarrow L_{i} \not \not \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}}$ we have:

$$
\left.\left.L \in f^{\prime} \Leftrightarrow L_{i} \in \partial \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{i} \in(\operatorname{val} f)_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L \in f ;
$$

thus $f^{\prime}=f$.
Let now α is an indexed family of functions $\alpha_{i} \in \mathfrak{A}_{i}^{(\operatorname{dom} \mathfrak{A}) \backslash\{i\}}$ conforming to the formula (4). Let relation f between posets is defined by the formula $\left.L \in f \Leftrightarrow L_{i} \not \not \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}}$. Then

$$
(\operatorname{val} f)_{i} L=\left\{K \in \mathfrak{A}_{i}\left|K \nsim \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}}\right\}=K=\left.\partial \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}}
$$

and thus (val $f)_{i} L$ is a core star that is f is a pre-staroid. For the indexed family α^{\prime} defined by the formula $\alpha_{i}^{\prime} L=\langle f\rangle_{i} L$ we have

$$
\partial \alpha_{i}^{\prime} L=\partial\langle f\rangle_{i} L=\left\{K \in \mathfrak{A}_{i} \mid K \nsim \alpha_{i} L\right\}=\partial \alpha_{i} L ;
$$

thus $\alpha^{\prime}=\alpha$.
We have shown that these are bijections.
Theorem 78. $\langle f\rangle_{j}(L \cup\{(i ; X \cup Y)\})=\langle f\rangle_{j}(L \cup\{(i ; X)\}) \cup\langle f\rangle_{j}(L \cup\{(i ; Y)\})$ for every staroid f if (form $f)_{j}$ is a boolean lattice and $i, j \in$ arity f.

Proof. Let $i \in$ arity f and $L \in \prod_{k \in L \backslash\{i, j\}} \mathfrak{A}_{k}$. Let $Z \in \mathfrak{A}_{i}$.
$Z \nsim\langle f\rangle_{j}(L \cup\{(i ; X \cup Y)\}) \Leftrightarrow L \cup\{(i ; X \cup Y),(j ; Z)\} \in f \Leftrightarrow X \cup Y \in(\text { val } f)_{i}(L \cup\{(j ;$ $Z)\}) \Leftrightarrow X \in(\operatorname{val} f)_{i}\left(L \cup\{(j ; Z)\} \vee Y \in(\operatorname{val} f)_{i}(L \cup\{(j ; Z)\}) \Leftrightarrow L \cup\{(i ; X),(j ; Z)\} \in f \vee L \cup\{(i ; Y)\right.$, $(j ; Z)\} \in f \Leftrightarrow \uparrow^{\mathfrak{R}_{i}} Z \nsim\langle f\rangle_{j}(L \cup\{(i ; X)\}) \vee Z \nsim\langle f\rangle_{j}(L \cup\{(i ; Y)\})$

Thus $\langle f\rangle_{j}(L \cup\{(i ; X \cup Y)\})=\langle f\rangle_{j}(L \cup\{(i ; X)\}) \cup\langle f\rangle_{j}(L \cup\{(i ; Y)\})$.
Let us consider the filtrator $\left(\prod_{i \in \operatorname{arity} f} \mathfrak{F}\left((\text { form } f)_{i}\right) ; \prod_{i \in \operatorname{arity} f}(\text { form } f)_{i}\right)$.
Theorem 79. Let $\left(\mathfrak{A}_{i} ; \mathfrak{Z}_{i}\right)$ is a family of join-closed down-aligned filtrators filtrators whose both base and core are join-semilattices. Let f is a pre-staroid of the form \mathfrak{Z}. Then $\uparrow \uparrow f$ is a staroid of the form \mathfrak{A}.

Proof. First prove that GR $\uparrow \uparrow f$ is a pre-staroid. We need to prove that $0 \notin(\mathrm{GR} \uparrow \uparrow)_{i}$ (that is up $0 \notin(\operatorname{GR} f)_{i}$ what is true by the theorem conditions) and that for every $\mathcal{X}, \mathcal{Y} \in \mathfrak{A}_{i}$ and $\mathcal{L} \in \prod_{i \in(\operatorname{arity} f) \backslash\{i\}} \mathfrak{A}_{i}$ where $i \in \operatorname{arity} f$

$$
\mathcal{L} \cup\{(i ; \mathcal{X} \sqcup \mathcal{Y})\} \in \operatorname{GR} \uparrow \uparrow f \Leftrightarrow \mathcal{L} \cup\{(i ; \mathcal{X})\} \in \operatorname{GR} \uparrow f \vee \mathcal{L} \cup\{(i ; \mathcal{Y})\} \in \operatorname{GR} \uparrow \uparrow f .
$$

The reverse implication is obvious. Let $\mathcal{L} \cup\{(i ; \mathcal{X} \sqcup \mathcal{Y})\} \in \operatorname{GR} \uparrow f$. Then for every $L \in \mathcal{L}$ and $X \in \mathcal{X}$, $Y \in \mathcal{Y}$ we have and $X \sqcup^{\mathfrak{3}_{i}} Y \sqsupseteq \mathcal{X} \sqcup^{\mathfrak{A}_{i}} \mathcal{Y}$ thus $L \cup\left\{\left(i ; X \sqcup^{\mathfrak{3}_{i}} Y\right)\right\} \in \operatorname{GR} f$ and thus

$$
L \cup\{(i ; X)\} \in \operatorname{GR} f \vee L \cup\{(i ; Y)\} \in \operatorname{GR} f
$$

consequently $\mathcal{L} \cup\{(i ; \mathcal{X})\} \in \mathrm{GR} \uparrow \uparrow \vee \mathcal{L} \cup\{(i ; \mathcal{Y})\} \in \mathrm{GR} \uparrow \uparrow f$.
It is left to prove that $\uparrow \uparrow f$ is an upper set, but this is obvious.
There is a conjecture similar to the above theorems:
Conjecture 80. $L \in[f] \Rightarrow[f] \cap \prod_{i \in \operatorname{dom} \mathfrak{A}}$ atoms $L_{i} \neq \emptyset$ for every multifuncoid f of the form whose elements are atomic posets. (Does this conjecture hold for the special case of form whose elements are posets on filters on a set?)

Conjecture 81. Let \mho be a set, \mathfrak{F} be the set of f.o. on \mho, \mathfrak{P} be the set of principal f.o. on \mho, let n be an index set. Consider the filtrator $\left(\mathfrak{F}^{n} ; \mathfrak{P}^{n}\right)$. Then if f is a completary staroid of the form \mathfrak{P}^{n}, then $\uparrow \uparrow f$ is a completary staroid of the form \mathfrak{F}^{n}.

8 Join of multifuncoids

Pre-multifuncoid sketches are ordered by the formula $f \sqsubseteq g \Leftrightarrow\langle f\rangle \sqsubseteq\langle g\rangle$ where \sqsubseteq in the right part of this formula is the product order. I will denote $\sqcap, \sqcup, \Pi, \bigsqcup$ (without an index) the order poset operations on the poset of pre-multifuncoid sketchs.

Remark 82. To describe this, the definition of order poset is used twice. Let f and g are posets of the same form \mathfrak{A}

$$
\langle f\rangle \sqsubseteq\langle g\rangle \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}:\langle f\rangle_{i} \sqsubseteq\langle g\rangle_{i} \quad \text { and }\left.\quad\langle f\rangle_{i} \sqsubseteq\langle g\rangle_{i} \Leftrightarrow \forall L \in \prod \mathfrak{A}\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{i\}}:\langle f\rangle_{i} L \sqsubseteq\langle g\rangle_{i} L .
$$

Theorem 83. $f \sqcup^{\mathrm{PFCD}(\mathfrak{A})} g=f \sqcup g$ for every pre-multifuncoids f and g of the same form \mathfrak{A} of distributive lattices.

Proof. $\alpha_{i} x \stackrel{\text { def }}{=} f_{i} x \sqcup g_{i} x$. It is enough to prove that α is a multifuncoid.
We need to prove:

$$
\left.\left.L_{i} \not \not ㇒ \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{j} \nprec \alpha_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} .
$$

Really, $\left.\left.\left.\left.L_{i} \not \not \not \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{i} \not \not \not f_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \sqcup g_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{i} \not \not \not f_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \vee$ $\left.\left.\left.\left.L_{i} \not \not g_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{j} \not \not f_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} \vee L_{j} \not \not g_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} \Leftrightarrow L_{j} \not \not f_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} \sqcup$ $\left.\left.g_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} \Leftrightarrow L_{j} \not ⿻ \alpha_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}}$.

Theorem 84. $\bigsqcup^{\mathrm{pFCD}(\mathfrak{A})} F=\bigsqcup F$ for every set F of pre-multifuncoids of the same form \mathfrak{A} of join infinite distributive complete lattices.

Proof. $\alpha_{i} x \stackrel{\text { def }}{=} \bigsqcup_{f \in F} f_{i} x$. It is enough to prove that α is a multifuncoid.
We need to prove:

$$
\left.\left.L_{i} \not \not \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{j} \not \not \alpha_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}}
$$

Really, $\left.\left.L_{i} \not \nsim \alpha_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow L_{i} \nsucc \bigsqcup_{f \in F} f_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow \exists f \in F:\left.L_{i} \nsucc f_{i} L\right|_{(\operatorname{dom} L) \backslash\{i\}} \Leftrightarrow \exists f \in F$: $\left.\left.\left.L_{j} \not \not f_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} \Leftrightarrow L_{j} \nsucc \bigsqcup_{f \in F} f_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}} \Leftrightarrow L_{j} \not \not \alpha_{j} L\right|_{(\operatorname{dom} L) \backslash\{j\}}$.

Proposition 85. The mapping $f \mapsto[f]$ is an order embedding, for multifuncoids of the form \mathfrak{A} of separable starrish posets.

Proof. The mapping $f \mapsto[f]$ is defined because \mathfrak{A} are starrish poset. The mapping is injective because \mathfrak{A} are separable posets. That $f \mapsto[f]$ is a monotone function is obvious.

Remark 86. This order embedding is useful to describe properties of posets of pre-staroids.
Theorem 87. If f, g are multifuncoids of the same form \mathfrak{A} of distributive lattices, then $f \sqcup^{\mathrm{pFCD}(\mathfrak{A l})} g \in \mathrm{FCD}(\mathfrak{A})$.

Proof. Let $A \in\left[f \sqcup^{\mathrm{pFCD}(\mathfrak{A l})} g\right]$ and $B \sqsupseteq A$. Then for every $k \in \operatorname{dom} \mathfrak{A}$
$\left.A_{k} \not \not\left(f \sqcup^{\mathrm{pFCD}(\mathfrak{A l})} g\right) A\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}=\left.(f \sqcup g) A\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}=f\left(\left.A\right|_{(\operatorname{dom~} \mathfrak{A}) \backslash\{k\}}\right) \sqcup g\left(\left.A\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right)$.
Thus $A_{k} \not \not f\left(\left.A\right|_{(\operatorname{dom} \mathfrak{R}) \backslash\{k\})} \vee A_{k} \not \neq g\left(\left.A\right|_{(\operatorname{dom} \mathfrak{l}) \backslash\{k\})}\right) ; A \in[f] \vee A \in[g] ; B \in[f] \vee B \in[g]\right.$; $B_{k} \not \nsim f\left(\left.B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right) \vee B_{k} \not \neq g\left(\left.B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right) ; f\left(\left.B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right) \sqcup g\left(\left.B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right)=(f \sqcup$ $g)\left.B\right|_{(\operatorname{dom~} \mathfrak{A}) \backslash\{k\}}=\left.\left(f \sqcup^{\mathrm{PFCD}(\mathfrak{A l})} g\right) B\right|_{(\operatorname{dom~} \mathfrak{A}) \backslash\{k\} \nsucc B_{k}}$. Thus $B \in\left[f \sqcup^{\mathrm{pFCD}(\mathfrak{A})} g\right]$.

Theorem 88. If F is a set multifuncoids of the same form \mathfrak{A} of join inifinite distributive complete lattices, then $\bigsqcup^{\mathrm{pFCD}(\mathfrak{A})} f \in \mathrm{FCD}(\mathfrak{A})$.

Proof. Let $A \in\left[\bigsqcup^{\mathrm{pFCD}(\mathfrak{d})} f\right]$ and $B \sqsupseteq A$. Then for every $k \in \operatorname{dom} \mathfrak{A}$.

$$
\left.A_{k} \not \not\left(\bigsqcup^{\mathrm{pFCD}(\mathfrak{A})} F\right) A\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}=\left.(\bigsqcup F) A\right|_{(\operatorname{dom} \mathfrak{l}) \backslash\{k\}}=\bigsqcup_{f \in F} f\left(\left.A\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right) .
$$

Thus $\exists f \in F: A_{k} \not \not \neq f\left(\left.A\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right) ; \exists f \in F: A \in[f] ; B \in[f] \vee B \in[g] ; \exists f \in F: B_{k} \notin$ $f\left(\left.B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\})} ; \bigsqcup_{f \in F} f\left(\left.B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}\right)=\left.(f \sqcup g) B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}}=\left.\left(\bigsqcup^{\mathrm{PFCD}(\mathfrak{A})} F\right) B\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{k\}} \nVdash B_{k}\right.$. Thus $B \in\left[\bigsqcup^{\mathrm{pFCD}(\mathfrak{A l})} F\right]$.

Conjecture 89. The formula $f \sqcup^{\mathrm{FCD}(\mathfrak{A})} g \in \operatorname{cFCD}(\mathfrak{A})$ is not true in general for completary multifuncoids (even for multifuncoids on powersets) f and g of the same form \mathfrak{A}.

9 Infinite product of elements and filters

Definition 90. Let A_{i} is a family of elements of a family \mathfrak{A}_{i} of posets. The staroidal product $\prod^{\operatorname{Strd}(\mathfrak{A l})} A_{i}$ is defined by the formula (for every $L \in \Pi \mathfrak{A}$)

$$
\text { form } \prod^{\operatorname{Strd}(\mathfrak{A})} A=\mathfrak{A} \quad \text { and } \quad L \in \mathrm{GR} \prod^{\operatorname{Strd}(\mathfrak{A})} A \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \nsucc L_{i} .
$$

Theorem 91. Staroidal product is a completary staroid (if our posets are distributive lattices).
Proof. We need to prove

$$
\forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \not\left(\left(L_{0} i \sqcup L_{1} i\right) \Leftrightarrow \exists c \in\{0,1\}^{n} \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \nsim L_{c(i)} i .\right.
$$

Really, $\forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \neq\left(L_{0} i \sqcup L_{1} i\right) \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}:\left(A_{i} \not \not \neq L_{0} i \vee A_{i} \not \nsim L_{1} i\right) \Leftrightarrow \exists c \in\{0,1\}^{\operatorname{dom} \mathfrak{A}} \forall i \in \operatorname{dom} \mathfrak{A}:$ $A_{i} \not \nsim L_{c(i)} i$.

Definition 92. Let \mathfrak{A} is an indexed family of posets with least elements. Then funcoidal product is defined by the formulas:

$$
\text { form } \prod^{\mathrm{FCD}(\mathfrak{A})} A=\mathfrak{A} \quad \text { and } \quad \operatorname{GR}\left(\prod^{\mathrm{FCD}(\mathfrak{A})} A\right)_{k} L= \begin{cases}A_{k} & \text { if } \forall i \in(\operatorname{dom} \mathfrak{A}) \backslash\{k\}: A_{i} \nsucc L_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

Proposition 93. $\Pi^{\mathrm{Strd}(\mathfrak{A})} A=\left[\prod^{\mathrm{FCD}(\mathfrak{A})} A\right]$.
Proof. $L \in \mathrm{GR} \prod^{\mathrm{Strd}(\mathfrak{A})} A \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \not \not L_{i} \Leftrightarrow \forall i \in(\operatorname{dom} \mathfrak{A}) \backslash\{k\}: A_{i} \nsucc L_{i} \wedge L_{k} \not \not \not A_{k} \Leftrightarrow$ $A_{k} \not \not\left(\prod^{\mathrm{FCD}(\mathfrak{A})} A\right)_{k} L \Leftrightarrow L \in \mathrm{GR}\left[\prod^{\mathrm{FCD}(\mathfrak{A})} A\right]$.

Corollary 94. Funcoidal product is a completary multifuncoid.
Proof. It is enough to prove that funcoidal product is a pre-multifuncoid. Really,
$\left.L_{i} \not \not \mathrm{GR}\left(\prod_{i}^{\mathrm{FCD}(\mathfrak{A l})} A\right)_{i} L\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{i\}} \Leftrightarrow \forall i \in \operatorname{dom} \mathfrak{A}:\left.A_{i} \not \not L_{i} \Leftrightarrow L_{j} \not \not \mathrm{GR}\left(\prod^{\mathrm{FCD}(\mathfrak{A l})} A\right)_{j} L\right|_{(\operatorname{dom} \mathfrak{A}) \backslash\{j\}}$.
Theorem 95. If our filtrator $(\Pi \mathfrak{A} ; \Pi \mathfrak{Z})$ is with separable core and $A \in \Pi \mathfrak{Z}$, then $\uparrow \prod^{\operatorname{Strd}(\mathfrak{Z})} A=$ $\Pi^{\mathrm{Strd}(\mathfrak{A l})} A$.

Proof. GR $\uparrow \prod^{\operatorname{Strd}(\mathfrak{Z})} A=\left\{L \in \mathfrak{A} \mid L \subseteq \prod^{\operatorname{Strd}(\mathfrak{Z})} A\right\}=\{L \in \mathfrak{A} \mid \forall K \in L, i \in \operatorname{dom} \mathfrak{A}$: $\left.A_{i} \not \not K_{i}\right\}=\left\{L \in \mathfrak{A} \mid \forall i \in \operatorname{dom} \mathfrak{A}, K \in L_{i}: A_{i} \not \nVdash K\right\}=\left\{L \in \mathfrak{A} \mid \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \not L_{i}\right\}=\mathrm{GR} \prod^{\operatorname{Strd}(\mathfrak{A})} A$.

Proposition 96. Let $(\Pi \mathfrak{A} ; \Pi \mathfrak{Z})$ is a meet-closed filtrator. Then $\downarrow \Pi^{\operatorname{Strd}(\mathfrak{A})} A=\Pi^{\operatorname{Strd}(\mathfrak{Z})} A$.
Proof. GR $\downarrow \prod^{\operatorname{Strd}(\mathfrak{A l})} A=\downarrow \mathrm{GR} \prod^{\operatorname{Strd}(\mathfrak{A})} A=\downarrow\left\{L \in \prod \mathfrak{A} \mid \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \not L_{i}\right\}=$ $\left\{L \in \Pi \mathfrak{A} \mid \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \not L_{i}\right\} \cap \prod \mathfrak{Z}=\left\{L \in \prod \mathfrak{Z} \mid \forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \not \not L_{i}\right\}=\operatorname{GR} \prod^{\operatorname{Strd}(\mathfrak{Z})} A$.

Theorem 97. Let \mathfrak{F} is a family of sets of filters on distributive lattices with least elements. Let $a \in \prod \mathfrak{F}, S \in \mathscr{P} \prod \mathfrak{F}$ is a generalized filter base, $\Pi S=a$. Then

$$
\prod^{\operatorname{strd}(\mathfrak{F})} a=\prod\left\{\prod^{\operatorname{strd}(\mathfrak{F})} A \mid A \in S\right\} .
$$

Proof. That $\prod^{\operatorname{Strd}(\mathfrak{F})} a$ is a lower bound for $\left\{\prod^{\operatorname{Strd}(\mathfrak{F})} A \mid A \in S\right\}$ is obvious.

Let f is a lower bound for $\left\{\prod^{\operatorname{Strd}(\mathfrak{F})} A \mid A \in S\right\}$. Thus for every $A \in S$ we have $L \in \operatorname{GR} f$ implies $\forall i \in \operatorname{dom} \mathfrak{A}: A_{i} \nsucc L_{i}$. Then, by properties of generalized filter bases, $\forall i \in \operatorname{dom} \mathfrak{A}: a_{i} \not \not L_{i}$ that is $L \in \mathrm{GR} \prod^{\operatorname{Strd}(\mathfrak{F})} a$.

So $f \subseteq \prod^{\operatorname{Strd}(\mathfrak{F})} a$.
Theorem 98. Let \mathfrak{F} is a family of sets of filters on distributive lattices with least elements. Let $a \in \Pi \mathfrak{F}, S \in \mathscr{P} \prod \mathfrak{F}$ is a generalized filter base, $\Pi S=a, f$ is a staroid of the form $\Pi \mathfrak{F}$. Then

$$
\prod^{\operatorname{Strd}(\mathfrak{F})} a \nsim f \Leftrightarrow \forall A \in S: \prod^{\operatorname{Strd}(\mathfrak{A l})} A \nsim f .
$$

Proof. It follows from the previous theorem by properties of generalized filter bases.

9.1 On products of staroids

Definition 99. $\prod^{(D)} F=\left\{\right.$ uncurry $\left.z \mid z \in \prod F\right\}$ (reindexation product) for every indexed family F of relations.

Definition 100. Reindexation product of an indexed family F of anchored relations is defined by the formulas:

$$
\text { form } \prod^{(D)} F=\text { uncurry }(\text { form } \circ F) \quad \text { and } \quad \mathrm{GR} \prod^{(D)} F=\prod^{(D)}(\mathrm{GR} \circ F)
$$

Obvious 101.

1. form $\prod^{(D)} F=\left\{\left((i ; j) ;\left(\text { form } F_{i}\right)_{j}\right) \mid i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}\right\} ;$
2. GR $\prod^{(D)} F=\left\{\left\{((i ; j) ;(z i) j) \mid i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}\right\} \mid z \in \prod(\mathrm{GR} \circ F)\right\}$.

Proposition 102. $\prod^{(D)} F$ is an anchored relation if every F_{i} is an anchored relation.
Proof. We need to prove GR $\prod^{(D)} F \in \mathscr{P} \Pi$ form $\left(\prod^{(D)} F\right)$ that is
GR $\prod^{(D)} F \subseteq \Pi$ form $\left(\prod^{(D)} F\right)$
$\{$ uncurry $z \mid z \in \Pi(\mathrm{GR} \circ F)\} \in \mathscr{P} \prod\left\{\left((i ; j) ;\left(\text { form } F_{i}\right)_{j}\right) \mid i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}\right\}$;
$\left\{\right.$ uncurry $\left.z \mid z \in \prod(\mathrm{GR} \circ F)\right\} \subseteq \prod\left\{\left((i ; j) ;\left(\text { form } F_{i}\right)_{j}\right) \mid i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}\right\}$
$\left\{\left\{((i ; j) ;(z i) j) \mid i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}\right\} \mid z \in \prod(\mathrm{GR} \circ F)\right\} \subseteq \prod\left\{\left((i ; j) ;\left(\text { form } F_{i}\right)_{j}\right) \mid i \in \operatorname{dom} F\right.$, $\left.j \in \operatorname{arity} F_{i}\right\}$;
$\forall z \in \prod(\mathrm{GR} \circ F), i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}:(z i) j \in\left(\text { form } F_{i}\right)_{j}$.
Really, $z i \in \operatorname{GR} F_{i} \subseteq \prod$ (form F_{i}) and thus $(z i) j \in\left(\text { form } F_{i}\right)_{j}$.
Remark 103. I suspect that the above proof can be simplified.
Obvious 104. arity $\prod^{(D)} F=\coprod_{i \in \operatorname{dom} F}$ arity $F_{i}=\left\{(i ; j) \mid i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}\right\}$.
Definition 105. $f \times{ }^{(D)} g=\prod^{(D)} \llbracket f ; g \rrbracket$.
Lemma 106. $\prod^{(D)} F$ is an upper set if every F_{i} is an upper set.
Proof. We need to prove that $\prod^{(D)} F$ is an upper set. Let $a \in \prod^{(D)} F$ and an anchored relation $b \sqsupseteq a$ of the same form as a. We have $a=$ uncurry z for some $z \in \prod F$ that is $a(i ; j)=(z i) j$ for all $i \in \operatorname{dom} F$ and $j \in \operatorname{dom} F_{i}$ where $z i \in F_{i}$. Also $b(i ; j) \sqsupseteq a(i ; j)$. Thus (curry $\left.b\right) i \sqsupseteq z i$; curry $b \in \prod F$ because every F_{i} is an upper set and so $b \in \prod^{(D)} F$.

Proposition 107. Let F is an indexed family of anchored relations and every (form $F)_{i}$ is a joinsemilattice.

1. $\Pi^{(D)} F$ is a pre-staroid if every F_{i} is a pre-staroid.
2. $\prod^{(D)} F$ is a staroid if every F_{i} is a staroid.
3. $\prod^{(D)} F$ is a completary staroid if every F_{i} is a completary staroid.

Proof.

1. Let $q \in$ arity $\prod^{(D)} F$ that is $q=(i ; j)$ where $i \in \operatorname{dom} F, j \in \operatorname{arity} F_{i}$; let

$$
L \in \prod\left(\left.\left(\operatorname{form} \prod^{(D)} F\right)\right|_{\left(\operatorname{arity} \Pi^{(D)} F\right) \backslash\{q\}}\right)
$$

that is $L_{\left(i^{\prime} ; j^{\prime}\right)} \in\left(\text { form } \prod^{(D)} F\right)_{\left(i^{\prime} ; j^{\prime}\right)}$ for every $\left(i^{\prime} ; j^{\prime}\right) \in\left(\right.$ arity $\left.\prod^{(D)} F\right) \backslash\{q\}$, that is $L_{\left(i^{\prime} ; j^{\prime}\right)} \in\left(\text { form } F_{i}\right)_{j}$. We have $X \in\left(\text { form } \prod^{(D)} F\right)_{(i ; j)} \Leftrightarrow X \in\left(\text { form } F_{i}\right)_{j}$. So

$$
\begin{gathered}
\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid L \cup\{((i ; j) ; X)\} \in \mathrm{GR} \prod^{(D)} F\right\} \\
\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid \exists z \in \prod(\mathrm{GR} \circ F): L \cup\{((i ; j) ; X)\}=\text { uncurry } z\right\}
\end{gathered}
$$

$\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid \exists z \in \prod\left(\left.(\mathrm{GR} \circ F)\right|_{\left(\operatorname{arity} \Pi^{(D)} F\right) \backslash\{(i ; j)\}}\right), v \in \mathrm{GR} F_{i}\right.$: ($L=$ uncurry $\left.\left.z \wedge v_{j}=X\right)\right\}$
$\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid \exists z \in \prod\left(\left.(\mathrm{GR} \circ F)\right|_{\left(\operatorname{arity} \Pi^{(D)} F\right) \backslash\{(i ; j)\}}\right): L=\right.$ uncurry $\left.z \wedge \exists v \in \mathrm{GR} F_{i}: v_{j}=X\right\}$

If $\exists z \in \Pi\left(\left.\left(\begin{array}{ll}\mathrm{GR} & \circ\end{array}\right)\right|_{\left(\operatorname{arity} \Pi^{(D)} F\right) \backslash\{(i ; j)\}}\right): \quad L=$ uncurry z is false then $\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\emptyset$ is a free star. We can assume it is true. So

$$
\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid \exists v \in \operatorname{GR} F_{i}: v_{j}=X\right\}
$$

Thus
$\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid\left.\exists K \in\left(\right.\right.$ form $\left.\left.F_{i}\right)\right|_{\left(\operatorname{arity} F_{i}\right) \backslash\{j\}}: K \cup\{(j ; X)\} \in \operatorname{GR} F_{i}\right\}=$ $\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid\left.\exists K \in\left(\right.\right.$ form $\left.\left.F_{i}\right)\right|_{\left(\operatorname{arity} F_{i}\right) \backslash\{j\}}: K \cup\{(j ; X)\} \in \operatorname{GR} F_{i}\right\}=\left\{X \in\left(\text { form } F_{i}\right)_{j} \mid \exists K \in\right.$ $\left.\left(\right.$ form $\left.\left.F_{i}\right)\right|_{\left(\text {arity } F_{i}\right) \backslash\{j\}}: X \in\left(\operatorname{val} F_{j}\right) K\right\}$.

Thus $\left.A \sqcup B \in\left(\operatorname{val} \Pi^{(D)} F\right)_{(i ; j)} L \Leftrightarrow \exists K \in\left(\right.$ form $\left.F_{i}\right)\right|_{\left(\operatorname{arity} F_{i}\right) \backslash\{j\}}: A \sqcup B \in\left(\right.$ val $\left.F_{j}\right) K \Leftrightarrow$ $\left.\exists K \in\left(\right.$ form $\left.F_{i}\right)\right|_{\left(\operatorname{arity} F_{i}\right) \backslash\{j\}}:\left.\left(A \in\left(\operatorname{val} F_{j}\right) \vee B \in\left(\operatorname{val} F_{j}\right)\right) \Leftrightarrow \exists K \in\left(\right.$ form $\left.F_{i}\right)\right|_{\left(\operatorname{arity} F_{i}\right) \backslash\{j\}}:$ $\left.A \in\left(\operatorname{val} F_{j}\right) K \vee \exists K \in\left(\right.$ form $\left.F_{i}\right)\right|_{\left(\operatorname{arity} F_{i}\right) \backslash\{j\}}: A \in\left(\operatorname{val} F_{j}\right) K \Leftrightarrow A \in\left(\operatorname{val} \prod^{(D)} F\right)_{(i ; j)} L \vee$ $B \in\left(\operatorname{val} \Pi^{(D)} F\right)_{(i ; j)} L$. Least element 0 is not in $\left(\operatorname{val} \Pi^{(D)} F\right)_{(i ; j)} L$ because $K \cup\{(j ;$ $0)\} \notin \operatorname{GR} F_{i}$.
2. From the lemma.
3. We need to prove

$$
L_{0} \sqcup L_{1} \in \mathrm{GR} \prod^{(D)} F \Leftrightarrow \exists c \in\{0,1\}^{\text {arity }} \Pi^{(D)} F:\left(\lambda i \in \operatorname{arity} \prod^{(D)} F: L_{c(i)} i\right) \in \mathrm{GR} \prod^{(D)} F
$$

for every $L_{0}, L_{1} \in \Pi$ form $\prod^{(D)} F$ that is $L_{0}, L_{1} \in \Pi$ uncurry (form $\left.\circ F\right)$.
Really $L_{0} \sqcup L_{1} \in \mathrm{GR} \prod^{(D)} F \Leftrightarrow L_{0} \sqcup L_{1} \in\{$ uncurry $z \mid z \in \Pi(\mathrm{GR} \circ F)\}$.
$\exists c \in\{0,1\}^{\text {arity }} \Pi^{(D)} F:\left(\lambda i \in n: L_{c(i)} i\right) \in \mathrm{GR} \quad \prod^{(D)} F \Leftrightarrow \exists c \in\{0,1\}^{\text {arity }} \Pi^{(D)} F:(\lambda i \in$ arity $\left.\prod^{(D)} F: L_{c(i)} i\right) \in\{$ uncurry $z \mid z \in \Pi(\operatorname{GR} \circ F)\} \Leftrightarrow \exists c \in\{0,1\}^{\operatorname{arity}} \Pi^{(D)} F: \operatorname{curry}(\lambda i \in$ arity $\left.\prod^{(D)} F: L_{c(i)} i\right) \in \Pi(\mathrm{GR} \circ F) \Leftrightarrow \exists c \in\{0,1\}^{\operatorname{arity} \Pi^{(D)} F}: \operatorname{curry}\left(\lambda(i ; j) \in \operatorname{arity} \Pi^{(D)} F\right.$: $\left.L_{c(i ; j)}(i ; j)\right) \in \Pi(\operatorname{GR} \circ F) \Leftrightarrow \exists c \in\{0,1\}^{\text {arity } \Pi^{(D)} F}:\left(\lambda i \in \operatorname{dom} F:\left(\lambda j \in \operatorname{dom} F_{i}:\right.\right.$ $\left.\left.L_{c(i ; j)}(i ; j)\right)\right) \in \Pi(\mathrm{GR} \circ F) \Leftrightarrow \exists c \in\{0,1\}^{\text {arity }} \Pi^{(D)} F \forall i \in \operatorname{dom} F:\left(\lambda j \in \operatorname{dom} F_{i}: L_{c(i ; j)}(i ;\right.$ $j)) \in \mathrm{GR} F_{i} \Leftrightarrow \forall i \in \operatorname{dom} F \exists c \in\{0,1\}^{\operatorname{dom} F_{i}}:\left(\lambda j \in \operatorname{dom} F_{i}: L_{c(j)}(i ; j)\right) \in \mathrm{GR} F_{i} \Leftrightarrow$ $\forall i \in \operatorname{dom} F \exists c \in\{0,1\} \operatorname{dom} F_{i}:\left(\lambda j \in \operatorname{dom} F_{i}:\left(\operatorname{curry}\left(L_{c(j)}\right) i\right) j\right) \in \operatorname{GR} F_{i} \Leftrightarrow \forall i \in \operatorname{dom} F$: $\left(\operatorname{curry}\left(L_{0}\right) i \sqcup \operatorname{curry}\left(L_{1}\right) i \in \operatorname{GR} F_{i}\right) \Leftrightarrow L_{0} \sqcup L_{1} \in\left\{\operatorname{uncurry} z \mid z \in \prod(\right.$ GR $\left.\circ F)\right\}$.

For staroids it is defined ordinated product $\prod^{(\text {ord })}$ as defined in [2].
Obvious 108. If f and g are anchored relations and there exists a bijection φ from arity g to arity f such that $\{F \circ \varphi \mid F \in \operatorname{GR} f\}=\operatorname{GR} g$, then:

1. f is a pre-staroid iff g is a pre-staroid.
2. f is a staroid iff g is a staroid.
3. f is a completary staroid iff g is a completary staroid.

Corollary 109. Let F is an indexed family of anchored relations and every (form $F)_{i}$ is a joinsemilattice.

1. $\prod^{\text {(ord) }} F$ is a pre-staroid if every F_{i} is a pre-staroid.
2. $\Pi^{(\text {ord })} F$ is a staroid if every F_{i} is a staroid.
3. $\prod^{(\text {ord })} F$ is a completary staroid if every F_{i} is a completary staroid.

Proof. Use the fact that GR $\prod^{(\text {ord })} F=\left\{F \circ(\bigoplus(\operatorname{dom} \circ F))^{-1} \mid F \in \operatorname{GR} \prod^{(D)} f\right\}$.
Definition 110. $f \times{ }^{(\text {ord })} g=\prod^{(\text {ord })} \llbracket f ; g \rrbracket$.
Remark 111. If f and g are binary funcoids, then $f \times{ }^{\text {(ord) } g \text { is ternary. }}$

10 Star categories

Definition 112. A pre-category with star-morphisms consists of

1. a pre-category C (the base pre-category);
2. a set M (star-morphisms);
3. a function "arity" defined on M (how many objects are connected by this multimorphism);
4. a function Obj_{m} : arity $m \rightarrow \operatorname{Obj}(C)$ defined for every $m \in M$;
5. a function (star composition) $(m ; f) \mapsto \operatorname{StarComp}(m ; f)$ defined for $m \in M$ and f being an (arity m)-indexed family of morphisms of C such that $\forall i \in \operatorname{arity} m$: $\operatorname{Src} f_{i}=\operatorname{Obj}_{m} i\left(\operatorname{Src} f_{i}\right.$ is the source object of the morphism f_{i}) such that $\operatorname{arity} \operatorname{StarComp}(m ; f)=\operatorname{arity} m$ such that it holds:
6. $\operatorname{StarComp}(m ; f) \in M ;$
7. (associativiy law)
$\operatorname{StarComp}(\operatorname{StarComp}(m ; f) ; g)=\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: g_{i} \circ f_{i}\right)$.
(Here by definition $\lambda x \in D: F(x)=\{(x ; F(x)) \mid x \in D\}$.)
The meaning of the set M is an extension of C having as morphisms things with arbitrary (possibly infinite) indexed set Obj_{m} of objects, not just two objects as morphisms of C have only source and destination.

Definition 113. I will call Obj_{m} the form of the star-morphism m.
(Having fixed a pre-category with star-morphisms) I will denote $\operatorname{StarHom}(P)$ the set of starmorphisms of the form P.

Proposition 114. The sets StarHom (P) are disjoint (for different P).
Proof. If two star-morphisms have different forms, they are clearly not equal.
Definition 115. A category with star-morphisms is a pre-category with star-morphisms whose base is a category and the following equality (the law of composition with identity) holds for every multimorphism m :

$$
\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: \operatorname{id}_{\mathrm{Obj}_{m} i} i\right)=m .
$$

Definition 116. A partially ordered pre-category with star-morphisms is a category with starmorphisms, whose base pre-category is a partially ordered pre-category and every set

$$
\left\{m \in M \mid \mathrm{Obj}_{m}=X\right\}
$$

is partially ordered for every X, such that:

1. $m_{0} \sqsubseteq m_{1} \wedge f_{0} \sqsubseteq f_{1} \Rightarrow \operatorname{StarComp}\left(m_{0} ; f_{0}\right) \sqsubseteq \operatorname{StarComp}\left(m_{1} ; f_{1}\right)$ for every $m_{0}, m_{1} \in M$ such that $\mathrm{Obj}_{m_{0}}=\mathrm{Obj}_{m_{1}}$ and indexed families f_{0} and f_{1} of morphisms such that

$$
\forall i \in \operatorname{arity} m: \operatorname{Src} f_{0} i=\operatorname{Src} f_{1} i=\operatorname{Obj}_{m_{0}} i=\operatorname{Obj}_{m_{1}} i \quad \text { and } \quad \forall i \in \text { arity } m: \text { Dst } f_{0} i=\operatorname{Dst} f_{1} i
$$

Definition 117. A quasi-invertible pre-category with star-morphisms is a partially ordered precategory with star-morphisms whose base pre-category is a quasi-invertible pre-category, such that for every index set n, multimorphisms a and b of arity n, and an n-indexed family f of morphisms of the base pre-category it holds

$$
b \notin \operatorname{Star} \operatorname{Comp}(a ; f) \Leftrightarrow a \notin \operatorname{Star\operatorname {Comp}(b;f^{\dagger }).}
$$

Definition 118. A quasi-invertible category with star-morphisms is a quasi-invertible pre-category with star-morphisms which is a quasi-invertible pre-category with star-morphisms.

Each category with star-morphisms gives rise to a category (abrupt category, see a remark below why I call it "abrupt"), as described below. Below for simplicity I assume that the set M and the set of our indexed families of functions are disjoint. The general case (when they are not necessarily disjoint) may be easily elaborated by the reader.

- Objects are indexed (by arity m for some $m \in M$) families of objects of the category C and an (arbitrarily choosen) object None not in this set
- There are the following disjoint sets of morphisms:

1. indexed (by arity m for some $m \in M$) families of morphisms of C
2. elements of M
3. the identity morphism id $_{\text {None }}$ on None

- Source and destination of morphisms are defined by the formulas:
- $\quad \operatorname{Src} f=\lambda i \in \operatorname{dom} f: \operatorname{Src} f_{i} ;$
- Dst $f=\lambda i \in \operatorname{dom} f:$ Dst f_{i}
- $\operatorname{Src} m=$ None
- Dst $m=\operatorname{Obj}_{m}$.
- Compositions of morphisms are defined by the formulas:
- $g \circ f=\lambda i \in \operatorname{dom} f: g_{i} \circ f_{i}$ for our indexed families f and g of morphisms;
- $\quad f \circ m=\operatorname{StarComp}(m ; f)$ for $m \in M$ and a composable indexed family f;
- $m \circ \mathrm{id}_{\text {None }}=m$ for $m \in M$;
- $\quad \mathrm{id}_{\text {None }} \circ \mathrm{id}_{\text {None }}=i \mathrm{id}_{\text {None }}$.
- Identity morphisms for an object X are:

$$
\begin{aligned}
& \circ \\
& \circ \\
& \circ \\
& \circ \operatorname{id}_{\text {None }} \text { if } X=\text { None }
\end{aligned}
$$

We need to prove it is really a category.
Proof. We need to prove:

1. Composition is associative
2. Composition with identities complies with the identity law.

Really:

1. $(h \circ g) \circ f=\lambda i \in \operatorname{dom} f:\left(h_{i} \circ g_{i}\right) \circ f_{i}=\lambda i \in \operatorname{dom} f: h_{i} \circ\left(g_{i} \circ f_{i}\right)=h \circ(g \circ f)$; $g \circ(f \circ m)=\operatorname{StarComp}(\operatorname{StarComp}(m ; f) ; g)=\operatorname{StarComp}\left(m ; \lambda i \in\right.$ arity $\left.m: g_{i} \circ f_{i}\right)=$ $\operatorname{StarComp}(m ; g \circ f)=(g \circ f) \circ m$;

$$
f \circ\left(m \circ \mathrm{id}_{\text {None }}\right)=f \circ m=(f \circ m) \circ \operatorname{id}_{\text {None }} .
$$

2. $m \circ \operatorname{id}_{\text {None }}=m ; \operatorname{id}_{\text {Dst } m} \circ m=\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: \operatorname{id}_{\mathrm{Obj}_{m} i}\right)=m$.

Remark 119. I call the above defined category abrupt category because (excluding identity morphisms) it allows composition with an $m \in M$ only on the left (not on the right) so that the morphism m is "abrupt" on the right.

By $\llbracket x_{0} ; \ldots ; x_{n-1} \rrbracket \mathrm{I}$ denote an n-tuple.
Definition 120. Pre-category with star morphisms induced by a dagger pre-category C is:

- The base category is C.
- Star-morphisms are morphisms of C.
- arity $f=\{0,1\}$.
- $\mathrm{Obj}_{m}=\llbracket \operatorname{Src} m ;$ Dst $m \rrbracket$.
- $\operatorname{StarComp}(m ; \llbracket f ; g \rrbracket)=g \circ m \circ f^{\dagger}$.

Let prove it is really a category with star-morphisms.
Proof. We need to prove the associativity law:

$$
\operatorname{Star\operatorname {Comp}}(\operatorname{StarComp}(m ; \llbracket f ; g \rrbracket) ; \llbracket p ; q \rrbracket)=\operatorname{StarComp}(m ; \llbracket p \circ f ; q \circ g \rrbracket) .
$$

Really,
$\operatorname{Star\operatorname {Comp}}\left(g \circ m \circ f^{\dagger} ; \llbracket p ; q \rrbracket\right)=q \circ g \circ m \circ f^{\dagger} \circ p^{\dagger}=q \circ g \circ m \circ(p \circ f)^{\dagger}=\operatorname{StarComp}(m ; \llbracket p \circ f ; q \circ g \rrbracket)$.
Definition 121. Category with star morphisms induced by a dagger category C is the above definined pre-category with star-morphisms.

That it is a category (the law of composition with identity) is trivial.

Remark 122. We can carry definitions (such as below defined cross-composition product) from categories with star-morphisms into plain dagger categories. This allows us to research properties of cross-composition product of indexed families of morphism for categories with star-morphisms without separately considering the special case of dagger categories and just binary star-composition product.

10.1 Abrupt of quasi-invertible categories with star-morphisms

Definition 123. The abrupt partially ordered pre-category of a partially ordered pre-category with star-morphisms is the abrupt pre-category with the following order of morphisms:

- Indexed (by arity m for some $m \in M$) families of morphisms of C are ordered as function spaces of posets.
- Star-morphisms (which are morphisms None $\rightarrow \mathrm{Obj}_{m}$ for some $m \in M$) are ordered in the same order as in the pre-category with star-morphisms.
- Morphisms None \rightarrow None which are only the identity morphism ordered by the unique order on this one-element set.

We need to prove it is a partially ordered pre-category.
Proof. It trivally follows from the definition of partially ordered pre-category with star-morphisms.

Theorem 124. When a pre-category with star-morphisms is quasi-invertible, the corresponding abrupt category is also quasi-invertible.

Proof. We need to prove: $g \circ f \nsucc h \Leftrightarrow g \nprec h \circ f^{\dagger}$ (or equivalently $f^{\dagger} \circ g \nprec h \Leftrightarrow g \nprec f \circ h$) for all kinds of morphisms.

Consider the cases:
$g=\mathrm{id}_{\text {None }}$.
Subcases:

$$
\boldsymbol{g}=\boldsymbol{h}=\mathrm{id}_{\text {None }} . \text { Trivial. }
$$

$$
\boldsymbol{g} \in \boldsymbol{M} . g \circ f \nsim h \Leftrightarrow g \nsucc h \Leftrightarrow g \nsim h \circ f^{\dagger} \text {. }
$$

$\boldsymbol{g} \in \boldsymbol{M}$.
$f^{\dagger} \circ g \not \nsim h \Leftrightarrow \operatorname{StarComp}\left(g ; f^{\dagger}\right) \not \nprec \Leftrightarrow g \nLeftarrow \operatorname{StarComp}(h ; f) \Leftrightarrow g \nsucc f \circ h$.
\boldsymbol{g} is a family of morphism of \boldsymbol{C}.
$f^{\dagger} \circ g \nsucc h \Leftrightarrow \exists i \in \operatorname{dom} g: f_{i}^{\dagger} \circ g_{i} \not \not h_{i} \Leftrightarrow \exists i \in \operatorname{dom} g: g_{i} \not \nsim f_{i} \circ h_{i} \Leftrightarrow g \nsucc f \circ h$.

11 Product of an arbitrary number of funcoids

In this section it will be defined a product of an arbitrary (possibly infinite) family of funcoids.

11.1 Mapping a morphism into a pointfree funcoid

Definition 125. Let's define the pointfree funcoid χf for every morphism f or a quasi-invertible category:

$$
\langle\chi f\rangle a=f \circ a \quad \text { and } \quad\left\langle(\chi f)^{-1}\right\rangle b=f^{\dagger} \circ b .
$$

We need to prove it is really a pointfree funcoid.
Proof. $b \nsim\langle\chi f\rangle a \Leftrightarrow b \nsim f \circ a \Leftrightarrow a \nsim f^{\dagger} \circ b \Leftrightarrow a \nsim\left\langle(\chi f)^{-1}\right\rangle b$.

Remark 126. $\langle\chi f\rangle=(f \circ-)$ is the Hom-functor $\operatorname{Hom}(f,-)$ and we can apply Yoneda lemma to it.
Obvious 127. $\langle\chi(g \circ f)\rangle a=g \circ f \circ a$ for composable morphisms f and g or a quasi-invertible category.

11.2 General cross-composition

Let fix a quasi-invertible category with with star-morphisms. If f is an indexed family of morphisms from its base category, then the pointfree funcoid $\prod^{(C)} f$ from $\operatorname{StarHom}\left(\lambda i \in \operatorname{dom} f\right.$: $\left.\operatorname{Src} f_{i}\right)$ to $\operatorname{StarHom}\left(\lambda i \in \operatorname{dom} f: \operatorname{Dst} f_{i}\right)$ is defined by the formulas (for all star-morphisms a and b of these forms):

$$
\left\langle\prod^{(C)} f\right\rangle a=\operatorname{StarComp}(a ; f) \quad \text { and } \quad\left\langle\left(\prod^{(C)} f\right)^{-1}\right\rangle b=\operatorname{StarComp}\left(b ; f^{\dagger}\right)
$$

It is really a pointfree funcoid by the definition of quasi-invertible category.
In the terms of abrupt categories, these formulas can be rewritten as:

$$
\prod^{(C)} f=\chi f
$$

Theorem 128. $\left(\prod^{(C)} g\right) \circ\left(\prod^{(C)} f\right)=\prod_{i \in n}^{(C)}\left(g_{i} \circ f_{i}\right)$ for every n-indexed families f and g of composable morphisms of a quasi-invertible category with star-morphisms.

Proof. $\left\langle\prod_{i \in n}^{(C)}\left(g_{i} \circ f_{i}\right)\right\rangle a=\operatorname{StarComp}\left(a ; \lambda i \in n: g_{i} \circ f_{i}\right)=\operatorname{StarComp}(\operatorname{StarComp}(a ; f) ; g)$ and

$$
\left\langle\left(\Pi^{(C)} g\right) \circ\left(\Pi^{(C)} f\right)\right\rangle a=\left\langle\Pi^{(C)} g\right\rangle\left\langle\Pi^{(C)} f\right\rangle a=\operatorname{StarComp}(\operatorname{StarComp}(a ; f) ; g)
$$

Corollary 129. $\left(\prod^{(C)} f_{k-1}\right) \circ \ldots \circ\left(\prod^{(C)} f_{0}\right)=\prod_{i \in n}^{(C)}\left(f_{i}(k-1) \circ \ldots \circ f_{i}(k)\right)$ for every n-indexed families $f_{0}, \ldots, f_{n-1}, g_{0}, \ldots, g_{n-1}$ composable morphisms of a quasi-invertible category with starmorphisms.

Proof. By math induction.

11.3 Some properties of staroids

Lemma 130. Let $A_{0}, A_{1} \in(\mathscr{P} \mho)^{n}$ are two families of sets and $\delta \in \mathscr{P}\left((\mathscr{P} \mho)^{n}\right)$. Then

$$
\delta \cap \prod_{i \in n}\left(A_{0} i \sqcup A_{1} i\right) \neq \emptyset \Leftrightarrow \exists c \in\{0,1\}^{n}: \delta \cap \prod_{i \in n} A_{c(i)} i \neq \emptyset .
$$

Proof. $f \in \prod_{i \in n}\left(A_{0} i \sqcup A_{1} i\right) \Leftrightarrow \forall i \in n:\left(f_{i} \in A_{0} i \cup A_{1} i\right) \Leftrightarrow \forall i \in n:\left(f_{i} \in A_{0} i \vee f_{i} \in A_{1} i\right) \Leftrightarrow \exists c \in\{0$, $1\}^{n} \forall i \in n: f_{i} \in A_{c(i)} i \Leftrightarrow \exists c \in\{0,1\}^{n}: f \in \prod_{i \in n} A_{c(i)} i$.
$f \in \delta \cap \prod_{i \in n}\left(A_{0} i \sqcup A_{1} i\right) \Leftrightarrow f \in \delta \wedge \exists c \in\{0,1\}^{n}: f \in \prod_{i \in n} A_{c(i)} i \Leftrightarrow \exists c \in\{0,1\}^{n}:$ $f \in \delta \cap \prod_{i \in n} A_{c(i)} i \Rightarrow \exists c \in\{0,1\}^{n}: \delta \cap \prod_{i \in n} A_{c(i)} i \neq \emptyset$. The reverse implication is obvious.

Theorem 131. Let $\mathfrak{A}=\mathfrak{A}_{i \in n}$ is a family of boolean lattices.
A relation $\delta \in \mathscr{P} \Pi$ atoms ${ }^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}$ such that for every $a \in \Pi$ atoms ${ }^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}$

$$
\begin{equation*}
\forall A \in a: \delta \cap \prod_{i \in n} \text { atoms } \uparrow^{\mathfrak{L}_{i}} A_{i} \neq \emptyset \Rightarrow a \in \delta \tag{5}
\end{equation*}
$$

can be continued till the function $\uparrow \uparrow f$ for a unique staroid f of the form $\lambda i \in n$: $\mathfrak{P}\left(\mathfrak{A}_{i}\right)$. The funcoid f is completary.

For every $\mathcal{X} \in \prod_{i \in n} \mathfrak{F}\left(\mathfrak{A}_{i}\right)$

$$
\begin{equation*}
\mathcal{X} \in \mathrm{GR} \uparrow \uparrow f \Leftrightarrow \delta \cap \prod_{i \in n} \text { atoms } \mathcal{X}_{i} \neq \emptyset . \tag{6}
\end{equation*}
$$

Proof. By the theorem 81 (used that it is a boolean lattice) we have $\mathcal{X} \in \mathrm{GR} \uparrow \uparrow f \Leftrightarrow \mathrm{GR} \uparrow \uparrow$ $f \cap \prod_{i \in n}$ atoms $\mathcal{X}_{i} \neq \emptyset$ and thus (6). From this also follows uniqueness.

It is left to prove that there exists a completary staroid f such that $\uparrow \uparrow f$ is a continuation of δ.
Consider the relation f defined by the formula $X \in f \Leftrightarrow \delta \cap \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{H}_{i}} X_{i} \neq \emptyset$.
$I_{0} \sqcup I_{1} \in f \Leftrightarrow \delta \cap \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{A}_{i}}\left(I_{0} i \sqcup I_{1} i\right) \neq \emptyset \Leftrightarrow \delta \cap \prod_{i \in n}\left(\right.$ atoms $\uparrow^{\mathfrak{A}_{i}} I_{0} i \cup$ atoms $\left.\uparrow^{\mathfrak{A}_{i}} I_{1} i\right) \neq \emptyset$.
Thus by the lemma $I_{0} \sqcup I_{1} \in f \Leftrightarrow \exists c \in\{0,1\}^{n}: \delta \cap \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{H}_{i}} I_{c(i)} \neq \emptyset \Leftrightarrow \exists c \in\{0,1\}^{n}$: $\left(\lambda i \in n: I_{c(i)} i\right) \in f$. Trivially if $\exists i \in n$: $X_{i}=0$ then $X \notin f$. So f is a completary staroid.

Let $a \in \Pi$ atoms ${ }^{\widetilde{\mathcal{F}}\left(\mathfrak{A}_{i}\right)}$.
The reverse of (5) is obvious. So we have $a \in \delta \Leftrightarrow \forall A \in a: \delta \cap \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{A}_{i}} A_{i} \neq \emptyset \Leftrightarrow \forall A \in a$: $A \in f \Leftrightarrow \forall A \in a: A \in f \Leftrightarrow a \subseteq f \Leftrightarrow a \in \uparrow \uparrow f$. Thus $\uparrow \uparrow f$ is a continuation of δ.

Theorem 132. Let R is a set of staroids of the form $\lambda i \in n: \mathfrak{F}\left(\mathfrak{A}_{i}\right)$ where every \mathfrak{A}_{i} is a boolean lattice. If $x \in \prod_{i \in n}$ atoms $^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}$ then $x \in \mathrm{GR} \uparrow \uparrow \square R \Leftrightarrow \forall f \in R: x \in \uparrow \uparrow f$.

Proof. Let denote $x \in \delta \Leftrightarrow \forall f \in R: x \in \Uparrow \uparrow f$ for every $x \in \prod_{i \in n}$ atoms $^{\mathfrak{F}\left(\mathcal{A}_{i}\right)}$. For every $a \in$ $\prod_{i \in n}$ atoms $^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}$
$\forall X \in a: \delta \cap \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{A}_{i}} X_{i} \neq \emptyset \Leftrightarrow \forall X \in a \exists x \in \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{H}_{i}} X_{i}: x \in \delta \Leftrightarrow \forall X \in a \exists x \in$ $\prod_{i \in n}$ atoms $\uparrow^{\mathfrak{A H}_{i}} X_{i} \forall f \in R: x \in \uparrow \uparrow f \Rightarrow \forall X \in a, f \in R \exists x \in \prod_{i \in n}$ atoms $\uparrow^{\mathfrak{A}_{i}} X_{i}: x \in \uparrow \uparrow f \Rightarrow \forall X \in a, f \in R$: $X \in f \Leftrightarrow \forall f \in R: a \subseteq f \Leftrightarrow \forall f \in R: a \in \uparrow \uparrow f \Leftrightarrow a \in \delta$.

So by the previous theorem δ can be contimued till $\uparrow \uparrow p$ for some staroid p of the form $\lambda i \in n$: $\mathfrak{P}\left(\mho_{i}\right)$.

Let's prove $p=\Pi R$.
$x \in \uparrow p \Leftrightarrow x \in \delta \Rightarrow x \in \uparrow \uparrow f$ for every $f \in R$ and $x \in \prod_{i \in n}$ atoms $^{\widetilde{F}\left(\mathfrak{A}_{i}\right)}$. Thus $\uparrow \uparrow p \subseteq \uparrow \uparrow f$. Consequently $\forall f \in R: p \subseteq f$.

Suppose that q is a staroid of the form $\lambda i \in n: \mathfrak{P}\left(\mathfrak{A}_{i}\right)$ such that $\forall f \in R: q \subseteq f$. Then for every $x \in \prod_{i \in n}$ atoms $^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}$ we have $x \in \uparrow \uparrow q \Rightarrow \forall f \in R: x \in \uparrow f \Leftrightarrow x \in \delta \Leftrightarrow x \in \uparrow \uparrow p$. So $\uparrow q \subseteq \uparrow \uparrow p$ that is $q \subseteq p$.

We have proved $p=\Pi R$. It's remained to prove that $x \in \uparrow \uparrow p \Leftrightarrow \forall f \in R: x \in \uparrow \uparrow f$ for every $x \in \prod_{i \in n}$ atoms $^{\widetilde{\mathfrak{F}}\left(\mathcal{A}_{i}\right)}$. Really, $x \in \uparrow \uparrow p \Leftrightarrow x \in \delta \Leftrightarrow \forall f \in R: x \in \uparrow \uparrow$.

11.4 Star composition of binary relations

First define star composition for an n-ary relation a and an n-indexed family f of binary relations as an n-ary relation complying with the formulas:

$$
\begin{gathered}
\operatorname{Obj}_{\operatorname{StarComp}(a ; f)}=\{*\}^{n} ; \\
L \in \operatorname{Star\operatorname {Comp}(a;f)\Leftrightarrow \exists y\in a\forall i\in n:y_{i}f_{i}L_{i}}
\end{gathered}
$$

where $*$ is a unique object of the semigroup of small binary relations considered as a category.
Proposition 133. $b \notin \operatorname{StarComp}(a ; f) \Leftrightarrow \exists x \in a, y \in b \forall j \in n: x_{j} f_{j} y_{j}$.
Proof. We need to prove that $b \nsim \operatorname{StarComp}(a ; f) \Leftrightarrow a \notin \operatorname{StarComp}\left(b ; f^{\dagger}\right)$.
$b \nprec \operatorname{StarComp}(a ; f) \Leftrightarrow \exists y \in \Pi \mathfrak{A}:(y \in b \wedge y \in \operatorname{StarComp}(a ; f)) \Leftrightarrow \exists x \in \prod \mathfrak{A}:(y \in b \wedge \exists x \in a \forall j \in n:$ $\left.x_{j} f_{j} x_{j}\right) \Leftrightarrow \exists x \in \prod \mathfrak{A}, x \in a:\left(y \in b \wedge \forall j \in n: x_{j} f_{j} y_{j}\right) \Leftrightarrow \exists x \in a, y \in b \forall j \in n: x_{j} f_{j} y_{j}$.

Theorem 134. The semigroup of small binary relations considered as a category together with the set of of all n-ary relations (for every small n) and the above defined star-composition form a category with star-morphisms.

Proof. We need to prove:

1. $\operatorname{StarComp}(\operatorname{StarComp}(m ; f) ; g)=\operatorname{Star\operatorname {Comp}}\left(m ; \lambda i \in n: g_{i} \circ f_{i}\right)$;
2. $\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: \mathrm{id}_{\mathrm{Obj}_{m} i}\right)=m$;
3. $b \nsucc \operatorname{StarComp}(a ; f) \Leftrightarrow a \notin \operatorname{Star\operatorname {Comp}}\left(b ; f^{\dagger}\right)$
(the rest is obvious).

Really,

1. $L \in \operatorname{Star} \operatorname{Comp}(a ; f) \Leftrightarrow \exists y \in a \forall i \in n: y_{i} f_{i} L_{i}$.

Define the relation $R(f)$ by the formula $x R(f) y \Leftrightarrow \forall i \in n: x_{i} f_{i} y_{i}$. Obviously

$$
R\left(\lambda i \in n: g_{i} \circ f_{i}\right)=R(g) \circ R(f)
$$

$L \in \operatorname{StarComp}(a ; f) \Leftrightarrow \exists y \in a: y R(f) L$.
$L \in \operatorname{StarComp}(\operatorname{StarComp}(a ; f) ; g) \Leftrightarrow \exists p \in \operatorname{StarComp}(a ; f): p R(g) L \Leftrightarrow \exists p, y \in a:$ $(y R(f) p \wedge p R(g) L) \Leftrightarrow \exists y \in a: y(R(g) \circ R(f)) L \Leftrightarrow \exists y \in a:\left(y R\left(\lambda i \in n: g_{i} \circ f_{i}\right) L\right) \Leftrightarrow$ $L \in \operatorname{StarComp}\left(a ; \lambda i \in n: g_{i} \circ f_{i}\right)$ because $p \in \operatorname{StarComp}(a ; f) \Leftrightarrow \exists y \in a: y R(f) p$.
2. Obvious.
3. It follows from the proposition above.

Theorem 135. $\left\langle\prod^{(C)} f\right\rangle \prod_{i \in n}\left\langle f_{i}\right\rangle a_{i}$ for every families $f=f_{i \in n}$ of binary relations and $a=a_{i \in n}$ where a_{i} is a small set *(for each $\left.i \in n\right)$.

Proof. $L \in\left\langle\prod^{(C)} f\right\rangle \Pi a \Leftrightarrow L \in \operatorname{StarComp}\left(\prod a ; f\right) \Leftrightarrow \exists y \in \prod a \forall i \in n: y_{i} f_{i} L_{i} \Leftrightarrow \exists y \in \prod a \forall i \in n$: $\{y\} \not \not\left\langle\left\langle f_{i}^{-1}\right\rangle\left\{L_{i}\right\} \Leftrightarrow \forall i \in n \exists y \in a_{i}:\{y\} \nsim\left\langle f_{i}^{-1}\right\rangle\left\{L_{i}\right\} \Leftrightarrow \forall i \in n: a_{i} \not \not \not\left\langle f_{i}^{-1}\right\rangle\left\{L_{i}\right\} \Leftrightarrow \forall i \in n\right.$: $\left\{L_{i}\right\} \not \not\left\langle\left\langle f_{i}\right\rangle a_{i} \Leftrightarrow \forall i \in n: L_{i} \in\left\langle f_{i}\right\rangle a_{i} \Leftrightarrow L \in \prod_{i \in n}\left\langle f_{i}\right\rangle a_{i}\right.$.

11.5 Star composition of Rel-morphisms

Define star composition for an n-ary anchored relation a and an n-indexed family f of Relmorphisms as an n-ary anchored relation complying with the formulas:

$$
\begin{gathered}
\operatorname{Obj}_{\operatorname{StarComp}(a ; f)}=\lambda i \in \operatorname{arity} a: \operatorname{Dst} f_{i} ; \\
\operatorname{arity} \operatorname{StarComp}(a ; f)=\operatorname{arity} a ; \\
L \in \operatorname{GR} \operatorname{StarComp}(a ; f) \Leftrightarrow L \in \operatorname{StarComp}(\operatorname{GR} a ; \operatorname{GR} \circ f) .
\end{gathered}
$$

(Here I denote $\operatorname{GR}(A ; B ; f)=f$ for every Rel-morphism f.)
Proposition 136. $b \notin \operatorname{StarComp}(a ; f) \Leftrightarrow \exists x \in a, y \in b \forall j \in n: x_{j} f_{j} y_{j}$.
Proof. From the previous section.
Theorem 137. Relations with above defined compositions form a quasi-invertible category with star-morphisms.

Proof. We need to prove:

1. $\operatorname{StarComp}(\operatorname{StarComp}(m ; f) ; g)=\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: g_{i} \circ f_{i}\right)$;
2. $\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: \mathrm{id}_{\mathrm{Obj}_{m} i}\right)=m$;
3. $b \notin \operatorname{StarComp}(a ; f) \Leftrightarrow a \notin \operatorname{StarComp}\left(b ; f^{\dagger}\right)$
(the rest is obvious).
It follows from the previous section.
Theorem 138. Cross-composition product of a family of Rel-morphisms is a discrete funcoid.
Proof. By the proposition and symmetry $\prod^{(C)} f$ is a pointfree funcoid. Obviously it is a funcoid $\prod_{i \in n} \operatorname{Src} f_{i} \rightarrow \prod_{i \in n}$ Dst f_{i}. Its completeness (and dually co-completeness) is obvious.

11.6 Cross-composition product of funcoids

Let a is a an anchored relation of the form \mathfrak{A} and $\operatorname{dom} \mathfrak{A}=n$.
Let every f_{i} (for all $i \in n$) is a pointfree funcoid with $\operatorname{Src} f_{i}=\mathfrak{A}_{i}$.

The star-composition of a with f is an anchored relation of the form $\lambda i \in \operatorname{dom} \mathfrak{A}$: Dst f_{i} defined by the formula

$$
L \in \operatorname{GR} \operatorname{Star} \operatorname{Comp}(a ; f) \Leftrightarrow \exists y \in \operatorname{GR} a \cap \prod_{i \in n} \text { atoms } \mathfrak{A}_{i} \forall i \in n: y_{i}\left[f_{i}\right] L_{i} .
$$

Definition 139. I will call a poset starrish when $\star a$ is a free star for every element a of this poset.

Theorem 140.

1. If a is a pre-staroid then $\operatorname{Star} \operatorname{Comp}(a ; f)$ is a staroid.
2. If a is a completary staroid and Dst f_{i} is a starrish join-semilattice for every $i \in n$ then $\operatorname{StarComp}(a ; f)$ is a completary staroid.

Proof.

1. First prove that $\operatorname{Star} \operatorname{Comp}(a ; f)$ is a pre-staroid. We need to prove that $(\operatorname{val} f)_{j} L$ is a free star, that is $\left\{X \in(\text { form } f)_{j} \mid L \cup\{(j ; X)\} \in \mathrm{GR} f\right\}$ is a free star, that is the following is a free star

$$
\left\{X \in(\text { form } f)_{j} \mid R(X)\right\}
$$

where $R(X)=\exists y \in \prod_{i \in n}$ atoms $\mathfrak{A}_{i}:\left(\forall i \in n:\left(i \neq j \Rightarrow y_{i}\left[f_{i}\right] L_{i}\right) \wedge y_{j}\left[f_{i}\right] X \wedge y \in a\right)$.

$$
R=\exists y \in \prod_{i \in n} \text { atoms } \mathfrak{A}_{i}:\left(\forall i \in n:\left(i \neq j \Rightarrow y_{i}\left[f_{i}\right] L_{i}\right) \wedge y_{j}\left[f_{j}\right] X \wedge y_{j} \in(\operatorname{val})_{j}\left(\left.a\right|_{n \backslash\{j\}}\right)\right)=
$$ $\exists y \in \prod_{i \in n \backslash\{j\}}$ atoms $\mathfrak{A}_{i}, y^{\prime} \in \operatorname{atoms} \mathfrak{A}_{j}:\left(\forall i \in n: y_{i}\left[f_{i}\right] L_{i} \wedge y^{\prime}\left[f_{j}\right] X \wedge y^{\prime} \in(\operatorname{val})_{j}\left(\left.a\right|_{n \backslash\{j\}}\right)\right)=$ $\exists y \in \prod_{i \in n \backslash\{j\}}$ atoms $\mathfrak{A}_{i} \forall i \in n: y_{i}\left[f_{i}\right] L_{i} \wedge \exists y^{\prime} \in \operatorname{atoms} \mathfrak{A}_{j}:\left(y^{\prime}\left[f_{j}\right] X \wedge y^{\prime} \in(\operatorname{val})_{j}\left(\left.a\right|_{n \backslash\{j\}}\right)\right)$

If $\exists y \in \prod_{i \in n \backslash\{j\}}$ atoms $\mathfrak{A}_{i} \forall i \in n: y_{i}\left[f_{i}\right] L_{i}$ is false our statement is obvious. We can assume it is true.

So it is enough to prove that

$$
\left\{X \in(\text { form } f)_{j} \mid \exists y^{\prime} \in \text { atoms } \mathfrak{A}_{j}:\left(y^{\prime}\left[f_{j}\right] X \wedge y^{\prime} \in(\operatorname{val})_{j}\left(\left.a\right|_{n \backslash\{j\}}\right)\right)\right\}
$$

is a free star. That is

$$
Q=\left\{X \in(\text { form } f)_{j} \mid \exists y^{\prime} \in\left(\text { atoms } \mathfrak{A}_{j}\right) \cap(\text { val })_{j}\left(\left.a\right|_{n \backslash\{j\}}\right): y^{\prime}\left[f_{j}\right] X\right\}
$$

is a free star. $0^{(\text {form } f)_{j}} \notin Q$ is obvious. That Q is an upper set is obvious. It remains to prove that $X_{0} \sqcup X_{1} \in Q \Rightarrow X_{0} \in Q \vee X_{1} \in Q$ for every $X_{0}, X_{1} \in(\text { form } f)_{j}$. Let $X_{0} \sqcup X_{1} \in Q$. Then there exist $y^{\prime} \in\left(\right.$ atoms $\left.\mathfrak{A}_{j}\right) \cap(\text { val })_{j}\left(\left.a\right|_{n \backslash\{j\}}\right)$ such that $y^{\prime}\left[f_{j}\right] X_{0} \sqcup X_{1}$. Consequently $y^{\prime}\left[f_{j}\right] X_{0} \vee y^{\prime}\left[f_{j}\right] X_{1}$. But then $X_{0} \in Q \vee X_{1} \in Q$.

To finish the proof we need to show that $\operatorname{GR} \operatorname{StarComp}(a ; f)$ is an upper set, but this is obvious.
 $\left(\forall i \in n: y_{i}\left[f_{i}\right] L_{0} i \sqcup L_{1} i \wedge y \in a\right)$ that is $\exists c \in\{0,1\}^{n}, y \in \prod_{i \in n}$ atoms $\mathfrak{A}_{i}:(\forall i \in n$: $\left.y_{i}\left[f_{i}\right] L_{c(i)} i \wedge y \in a\right)$ (taken into account that Dst f_{i} is starrish) that is $\exists c \in\{0,1\}^{n}$: $\left(\lambda i \in n: L_{c(i)} i\right) \in \operatorname{GR} \operatorname{StarComp}(a ; f)$. So $\operatorname{GR} \operatorname{Star} \operatorname{Comp}(a ; f)$ is a completary staroid.

Lemma 141. $b \not \nsim^{\operatorname{Anch}(\mathfrak{R})} \operatorname{StarComp}(a ; f) \Leftrightarrow \forall A \in a, B \in b, i \in n: A_{i}\left[f_{i}\right] B_{i}$ for anchored relations a and b.

Proof.

$$
\begin{aligned}
b \neq \operatorname{StarComp}(a ; f) & \Leftrightarrow \\
\exists x \in \operatorname{Anch}(\mathfrak{A}):(x \sqsubseteq b \wedge x \sqsubseteq \operatorname{StarComp}(a ; f)) & \Leftrightarrow \\
\exists x \in \operatorname{Anch}(\mathfrak{A}):(x \sqsubseteq b \wedge \forall B \in x: B \in \operatorname{StarComp}(a ; f)) & \Leftrightarrow \\
\exists x \in \operatorname{Anch}(\mathfrak{A}):\left(x \sqsubseteq b \wedge \forall B \in x \exists A \in \prod_{i \in \operatorname{dom} \mathfrak{A}} \mathfrak{A}_{i}:\left(\forall i \in n: A_{i}\left[f_{i}\right] B_{i} \wedge A \in a\right)\right) & \Leftrightarrow \\
\exists x \in \operatorname{Anch}(\mathfrak{A}):\left(x \sqsubseteq b \wedge \forall B \in x, A \in a, i \in n: A_{i}\left[f_{i}\right] B_{i}\right) & \Leftrightarrow \\
\forall B \in b, A \in a, i \in n: A_{i}\left[f_{i}\right] B_{i} . &
\end{aligned}
$$

Theorem 142. $a\left[\prod^{(C)} f\right] b \Leftrightarrow \forall A \in a, B \in b, i \in n: A_{i}\left[f_{i}\right] B_{i}$ for anchored relations a and b.
Proof. From the lemma.
Proposition 143. $b \not \not^{\operatorname{pStrd}(\mathfrak{A l})} \operatorname{StarComp}(a ; f) \Leftrightarrow b \not \not^{\mathrm{pStrd}(\mathfrak{B})} \operatorname{StarComp}(a ; f)$ for staroids a and b.
Proof. Because $\operatorname{StarComp}(a ; f)$ is a staroid.
Theorem 144. Anchored relations with above defined compositions form a quasi-invertible category with star-morphisms.

Proof. We need to prove:

1. $\operatorname{StarComp}(\operatorname{StarComp}(m ; f) ; g)=\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: g_{i} \circ f_{i}\right) ;$
2. $\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: \operatorname{id}_{\mathrm{Obj}_{m} i}\right)=m$;

(the rest is obvious).
Really,
3. $L \in \operatorname{GR} \operatorname{StarComp}(a ; f) \Leftrightarrow \exists y \in \operatorname{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n: y_{i}\left[f_{i}\right] L_{i}$.

Define the relation $R(f)$ by the formula $x R(f) y \Leftrightarrow \forall i \in n: x_{i}\left[f_{i}\right] y_{i}$. Obviously

$$
R\left(\lambda i \in n: g_{i} \circ f_{i}\right)=R(g) \circ R(f)
$$

$L \in \operatorname{GR} \operatorname{StarComp}(a ; f) \Leftrightarrow \exists y \in \operatorname{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i}: y R(f) L$.
$L \in \operatorname{GR} \operatorname{StarComp}(\operatorname{StarComp}(a ; f) ; g) \Leftrightarrow \exists p \in \operatorname{GR} \operatorname{StarComp}(a ; f) \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i}:$ $p R(g) L \Leftrightarrow \exists p, y \in \operatorname{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i}:(y R(f) p \wedge p R(g) L) \Leftrightarrow \exists y \in \mathrm{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i}:$ $y(R(g) \circ R(f)) L \Leftrightarrow \exists y \in \mathrm{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i}: y R\left(\lambda i \in n: g_{i} \circ f_{i}\right) L \Leftrightarrow \exists y \in$ $\operatorname{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n: y_{i}\left[g_{i} \circ f_{i}\right] L_{i} \Leftrightarrow L \in \operatorname{GR} \operatorname{StarComp}\left(a ; \lambda i \in n: g_{i} \circ f_{i}\right)$ because $p \in \operatorname{GR} \operatorname{StarComp}(a ; f) \Leftrightarrow \exists y \in \operatorname{GR} a \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i}: y R(f) p$.
2. Obvious.
3. It follows from the lemma above.

Theorem 145. $\left\langle\prod^{(C)} f\right\rangle \prod^{\text {Strd }} a=\prod_{i \in n}^{\text {Strd }}\left\langle f_{i}\right\rangle a_{i}$ for every families $f=f_{i \in n}$ of pointfree funcoids and $a=a_{i \in n}$ where $a_{i} \in \operatorname{Src} f_{i}$, if $\operatorname{Src} f_{i}$ (for every $i \in n$) is an atomic lattice.

Proof. $L \in\left\langle\prod^{(C)} f\right\rangle \prod^{\text {Strd }} a \Leftrightarrow L \in \operatorname{StarComp}\left(\prod^{\text {Strd }} a ; f\right) \Leftrightarrow \exists y \in \prod_{i \in \operatorname{dom} \mathfrak{A}}$ atoms $\mathfrak{A}_{i} \forall i \in n$: $\left(y_{i}\left[f_{i}\right] L_{i} \wedge y_{i} \not \not a_{i}\right) \Leftrightarrow \forall i \in n \exists y \in$ atoms $\mathfrak{A}_{i}:\left(y\left[f_{i}\right] L_{i} \wedge y \nsucc a_{i}\right) \Leftrightarrow \forall i \in n: a_{i}\left[f_{i}\right] L_{i} \Leftrightarrow \forall i \in n$: $L_{i} \not \not \mathcal{}\left\langle f_{i}\right\rangle a_{i} \Leftrightarrow L \in \prod_{i \in n}^{\text {Strd }}\left\langle f_{i}\right\rangle a_{i}$.

Theorem 146. For every filters $a_{0}, a_{1}, b_{0}, b_{1}$ we have

$$
a_{0} \times{ }^{\mathrm{FCD}} b_{0}\left[f \times^{(C)} g\right] a_{1} \times{ }^{\mathrm{FCD}} b_{1} \Leftrightarrow a_{0} \times{ }^{\mathrm{RLD}} b_{0}\left[f \times{ }^{(\mathrm{DP})} g\right] a_{1} \times{ }^{\mathrm{RLD}} b_{1}
$$

Proof. $a_{0} \times{ }^{\mathrm{RLD}} b_{0}\left[f \times{ }^{(\mathrm{DP})} g\right] a_{1} \times{ }^{\mathrm{RLD}} b_{1} \Leftrightarrow \forall A_{0} \in a_{0}, B_{0} \in b_{0}, A_{1} \in a_{1}, B_{1} \in b_{1}: A_{0} \times B_{0}\left[f \times{ }^{(\mathrm{DP})} g\right]$ $A_{1} \times B_{1}$.
$A_{0} \times B_{0}\left[f \times{ }^{(\mathrm{DP})} g\right] A_{1} \times B_{1} \Leftrightarrow A_{0} \times B_{0}\left[f \times{ }^{(C)} g\right] A_{1} \times B_{1} \Leftrightarrow A_{0}[f] A_{1} \wedge B_{0}[g] B_{1}$.
Thus it is equivalent to $a_{0}[f] a_{1} \wedge b_{0}[g] b_{1}$ that is $a_{0} \times{ }^{\mathrm{FCD}} b_{0}\left[f \times{ }^{(C)} g\right] a_{1} \times{ }^{\mathrm{FCD}} b_{1}$.
(It was used the theorem 142.)
Can the above theorem be generalized for the infinitary case?
Proposition 147. GR StarComp $\left(a ; \lambda i \in n: f_{i} \sqcup g_{i}\right)=\operatorname{GRStarComp}(a ; f) \sqcup^{\mathrm{pFCD}} \operatorname{GR} \operatorname{StarComp}(a ; g)$ if f, g are pointfree funcoids and every $\operatorname{Src} f_{i}=\operatorname{Src} g_{i}$ and Dst $f_{i}=$ Dst g_{i} are distributive lattices with least elements, and a is a multifuncoid of the form $\lambda i \in n: \operatorname{Src} f_{i}$.

Proof. It follows from the theorem ?? in [3].
Conjecture 148. GR $\operatorname{StarComp}\left(a \sqcup^{\mathrm{pFCD}} b ; f\right)=\operatorname{GR~StarComp}(a ; f) \sqcup^{\mathrm{pFCD}} \operatorname{GR} \operatorname{StarComp}(b ; f)$ if f is a pointfree funcoid and a, b are multifuncoids of the same form, composable with f.

12 More on cross-composition of funcoids

Lemma 149. Let f is a staroid such that $(\text { form } f)_{i}$ is a boolean lattice for each $i \in$ arity f. Let $a \in \prod_{i \in \operatorname{arity} f} \mathfrak{F}^{(\text {form } f)_{i}}$.

If $\uparrow f \sqsubseteq \prod^{\mathrm{Strd}} a$ then $\uparrow \uparrow f=\operatorname{StarComp}\left(\uparrow f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right)$.
Proof. Let $\uparrow \uparrow \sqsubseteq \Pi^{\text {Strd }} a$. Then $L \in \mathrm{GR} \uparrow \uparrow f \Rightarrow L \neq a$.
$L \in \mathrm{GR} \operatorname{StarComp}\left(\uparrow f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) \Leftrightarrow \exists y \in \mathrm{GR} \uparrow \uparrow f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n:$ $y_{i}\left[I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right] L_{i} \Leftrightarrow \exists y \in \mathrm{GR} \uparrow f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n:\left(y_{i} \sqsubseteq L_{i} \wedge y_{i} \sqsubseteq a_{i}\right) \Leftrightarrow \exists y \in \mathrm{GR} \uparrow \uparrow$ $f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n:\left(y_{i} \not \not L_{i} \wedge y_{i} \not \not a_{i}\right) \Leftrightarrow \exists y \in \operatorname{GR} \uparrow \uparrow f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n: y_{i} \not \not \not L_{i}$ because $\uparrow \uparrow f \in \mathrm{GR} g \Rightarrow y \not ⿻ a$.

If $L \in \uparrow \uparrow f$ then there exists $y \in \mathrm{GR} \uparrow \uparrow f \cap \prod_{i \in n}$ atoms \mathfrak{A}_{i} such as $y \sqsubseteq L$ and thus $\forall i \in n: y_{i} \nsucc L_{i}$ (by the theorem 81).

We have $L \in \operatorname{GR} \operatorname{StarComp}\left(\uparrow f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) \Leftarrow L \in \uparrow \uparrow f$ that is GR $\operatorname{StarComp}(\uparrow f ;$ $\left.\lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) \sqsupseteq \uparrow \uparrow f$. The other directoin is obvious.

Theorem 150. Let f is a staroid such that $(\text { form } f)_{i}$ is a boolean lattice for each $i \in \operatorname{arity} f$. Let $a \in \prod_{i \in \operatorname{arity} f} \mathfrak{F}^{(\text {form } f)_{i}}$. Then

$$
\uparrow \uparrow \Pi^{\mathrm{FCD}(\text { form } f)} \prod^{\text {Strd }} a=\operatorname{StarComp}\left(\uparrow f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) .
$$

Proof. $h \stackrel{\text { def }}{=} \operatorname{StarComp}\left(\uparrow \uparrow ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right)$.
Obviously $h \sqsubseteq \Uparrow \uparrow f$ and $h \sqsubseteq \Pi^{\text {Strd }} a$.
Suppose $g \sqsubseteq \uparrow \uparrow f$ and $g \sqsubseteq \prod^{\text {Strd }} a$.
$x \in g \Leftrightarrow x \in \operatorname{StarComp}\left(g ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) \Rightarrow x \in \operatorname{StarComp}\left(f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) \Leftrightarrow x \in h$ (used the proposition above).

So $g \sqsubseteq h$.
Corollary 151. Let f is a completary staroid such that (form $f)_{i}$ is a boolean lattice for each $i \in \operatorname{arity} f$. Let $a \in \prod_{i \in \operatorname{arity} f} \mathfrak{F}^{(\text {form } f)_{i}}$. Then

$$
\Uparrow f \sqcap^{\mathrm{cStrd}(\text { form } f)} \prod^{\mathrm{Strd}} a=\operatorname{Star} \operatorname{Comp}\left(\uparrow f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) .
$$

Proof. Using the theorem 140.
Theorem 152. Let f is a staroid such that $(\text { form } f)_{i}$ is a boolean lattice for each $i \in$ arity f. Let $a \in \prod_{i \in \operatorname{arity} f} \mathfrak{F}^{(\text {form } f)_{i}}$. Then $\uparrow \uparrow f \not \not^{\mathrm{FCD}(\text { form } f)} \prod^{\operatorname{Strd}} a \Leftrightarrow a \in \Uparrow \uparrow$.
Proof. $\uparrow \uparrow f \not \not^{\mathrm{FCD}(\text { form } f)} \prod^{\operatorname{Strd}} a \Leftrightarrow \uparrow \uparrow f \Pi^{\mathrm{FCD}(\text { form } f)} \prod^{\operatorname{Strd}} a \neq 0 \Leftrightarrow \operatorname{StarComp}(\uparrow f ; \lambda i \in$ arity f : $\left.I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right) \neq 0^{\mathrm{FCD}(\text { form } f)} \Leftrightarrow \exists L \in \mho^{n}, y \in \mathrm{GR} \uparrow \uparrow f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n: y_{i}\left[I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right] L_{i} \Leftrightarrow \exists L \in \mho^{n}$, $y \in \mathrm{GR} \uparrow f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n:\left(y_{i} \sqsubseteq a_{i} \wedge y_{i} \sqsubseteq L_{i}\right) \Leftrightarrow \exists y \in \mathrm{GR} \uparrow \uparrow f \cap \prod_{i \in n}$ atoms $\mathfrak{A}_{i} \forall i \in n$: $y_{i} \sqsubseteq a_{i} \Leftrightarrow \mathrm{GR} \uparrow \uparrow \cap \prod_{i \in n}$ atoms $a_{i} \neq \emptyset \Leftrightarrow a \in f$.

Corollary 153. Let f is a completary staroid such that (form $f)_{i}$ is a boolean lattice for each $i \in \operatorname{arity} f$. Let $a \in \prod_{i \in \text { arity } f} \mathfrak{F}^{(\text {form } f)_{i}}$. Then $\uparrow \uparrow f \mathcal{\not}^{c \operatorname{Strd}(\text { form } f)} \prod^{\text {Strd }} a \Leftrightarrow a \in \uparrow f$.

Proof. Using the fact that $\uparrow \uparrow f \Pi^{\mathrm{pStrd}(\text { form } f)} \Pi^{\mathrm{Strd}} a=\operatorname{StarComp}\left(\uparrow f ; \lambda i \in \operatorname{dom} \mathfrak{A}: I_{a_{i}}^{\mathrm{FCD}\left(\mathfrak{A}_{i}\right)}\right)$ is a completary staroid (theorem 140).

Theorem 154. $\prod^{\text {Strd }} a \not \not ㇒ \mathrm{pStrd}^{\text {Strd }} b \Leftrightarrow \prod^{\text {Strd }} a \not \not ㇒ 夫^{\text {CStrd }} \prod^{\text {Strd }} b \Leftrightarrow b \in \prod^{\text {Strd }} a \Leftrightarrow a \in \prod^{\text {Strd }} b \Leftrightarrow a \nprec b$ for every indexed families a and b of filters on boolean algebras.

Proof. By corollary 666 we have $\prod^{\text {Strd }} b=\uparrow \uparrow f$ for some f. Thus as our filtrator is with separable core we can apply the theorem 152 and its corollary. So $\prod^{\text {Strd }} a \not \not^{\text {SStrd }} \prod^{\text {Strd }} b \Leftrightarrow a \in \prod^{\text {Strd }} b$ and $\Pi^{\text {Strd }} a \not \not^{\text {cStrd }} \prod^{\text {Strd }} b \Leftrightarrow a \in \prod^{\text {Strd }} b$. Similarly $\prod^{\text {Strd }} a \not \not^{\text {cStrd }} \prod^{\text {Strd }} b \Leftrightarrow b \in \prod^{\text {Strd }} a$. This by the definition of staroidal product is equivalent to $a \nsim b$. We are done.

13 Multireloids

Definition 155. I will call a multireloid of the form $A=A_{i \in n}$, where every each A_{i} is a set, a pair $(f ; A)$ where f is a filter on the set ΠA.

Definition 156. I will denote $\operatorname{Obj}(f ; A)=A$ and $\operatorname{GR}(f ; A)=f$ for every multireloid $(f ; A)$.
I will denote $\operatorname{RLD}(A)$ the set of multireloids of the form A.
The multireloid $\uparrow^{R L D(A)} F$ for a binary relation F is defined by the formulas:

$$
\operatorname{Obj} \uparrow^{\mathrm{RLD}(A)} F=A \quad \text { and } \quad \operatorname{GR} \uparrow^{\mathrm{RLD}(A)} F=\uparrow^{A} \mathrm{GR} F .
$$

Let a is a multireloid of the form A and $\operatorname{dom} A=n$.
Let every f_{i} is a reloid with $\operatorname{Src} f_{i}=A_{i}$.
The star-composition of a with f is a multireloid of the form $\lambda i \in \operatorname{dom} A$: $\operatorname{Src} f_{i}$ defined by the formulas:

$$
\begin{gathered}
\quad \operatorname{arity} \operatorname{StarComp}(a ; f)=n ; \\
\operatorname{GR} \operatorname{StarComp}(a ; f)=\prod\left\{\uparrow^{\mathrm{RLD}(A)} \operatorname{StarComp}(A ; F) \mid \forall A \in a, F \in \prod_{i \in n} f_{i}\right\} ; \\
\operatorname{Obj}_{m} \operatorname{Star\operatorname {Comp}(a;f)=\lambda i\in n:\text {Dst}f_{i}.}
\end{gathered}
$$

Theorem 157. Multireloids with above defined compositions form a quasi-invertible category with star-morphisms.

Proof. We need to prove:

1. $\operatorname{StarComp}(\operatorname{StarComp}(m ; f) ; g)=\operatorname{StarComp}\left(m ; \lambda i \in \operatorname{arity} m: g_{i} \circ f_{i}\right) ;$
2. $\operatorname{StarComp}\left(m ; \lambda i \in\right.$ arity $\left.m: \operatorname{id}_{\mathrm{Obj}_{m} i}\right)=m$;
3. $b \nsucc \operatorname{StarComp}(a ; f) \Leftrightarrow a \notin \operatorname{Star\operatorname {Comp}}\left(b ; f^{\dagger}\right)$
(the rest is obvious).
Really,
 $\left.G \in \prod_{i \in n} g_{i}\right\}=\Pi\left\{\uparrow^{R L D}(A) \operatorname{StarComp}(\operatorname{StarComp}(A ; F) ; G) \mid \forall A \in a, F \in \prod_{i \in n} f_{i}\right.$, $\left.G \in \prod_{i \in n} g_{i}\right\}=\Pi\left\{\uparrow^{R L D(A)} \operatorname{StarComp}(A ; G \circ F) \mid \forall A \in a, F \in \prod_{i \in n} f_{i}, G \in \prod_{i \in n} g_{i}\right\}=$ $\sqcap\left\{\uparrow^{\mathrm{RLD}(A)} \operatorname{StarComp}(A ; H) \mid \forall A \in a, H \in \prod_{i \in n} \lambda i \in n: g_{i} \circ f_{i}\right\}=\operatorname{StarComp}\left(a ; \lambda i \in n: g_{i} \circ f_{i}\right)$ (used properties of generalized filter bases) [TODO: More detailed proof.]
4. $\operatorname{StarComp}\left(m ; \lambda i \in\right.$ arity $\left.m: \operatorname{id}_{\mathrm{Obj}_{m} i}\right)=\Pi\left\{\uparrow \uparrow^{\operatorname{RLD}(A)} \operatorname{StarComp}\left(A ; \operatorname{id}_{X}\right) \mid \forall A \in m, X \in\right.$ $\left.\bigcup_{i \in n} \mathscr{P} \operatorname{Obj}_{m} i\right\}=\sqcap\left\{\uparrow \uparrow^{R L D(A)} A \mid \forall A \in a\right\}=m$.
5. Using properties of generalized filter bases,
$b \nprec \operatorname{StarComp}(a ; f) \Leftrightarrow \forall A \in a, B \in B, F \in \prod_{i \in n} f_{i}: B \nsucc \operatorname{StarComp}(A ; F) \Leftrightarrow \forall A \in a, B \in B$, $F \in \prod_{i \in n} f_{i}: B \nsucc\left\langle\prod^{(C)} F\right\rangle A \Leftrightarrow \forall A \in a, B \in B, F \in \prod_{i \in n} f_{i}: A \nsim\left\langle\left(\prod^{(C)} F\right)^{-1}\right\rangle B \Leftrightarrow$ $\forall A \in a, B \in B, F \in \prod_{i \in n} f_{i}: A \nsucc \operatorname{StarComp}\left(B ; F^{\dagger}\right) \Leftrightarrow a \nsim \operatorname{StarComp}\left(b ; f^{\dagger}\right)$.

Definition 158. Let f is a multireloid of the form A. Then for $i \in \operatorname{dom} A$

$$
\left.\operatorname{Pr}_{i}^{\mathrm{RLD}} f=\right\rceil\left\langle\uparrow^{A_{i}}\right\rangle\left\langle\operatorname{Pr}_{i}\right\rangle f .
$$

Definition 159. $\Pi^{\mathrm{RLD}} \mathcal{X}=\Pi\left\{\uparrow^{\mathrm{RLD}\left(\lambda i \in \operatorname{dom} \mathcal{X}: \operatorname{Base}\left(\mathcal{X}_{i}\right)\right)} \Pi X \mid X \in \mathcal{X}\right\}$ for every indexed family \mathcal{X} of filters on powersets.

Proposition 160. $\operatorname{Pr}_{k}^{\mathrm{RLD}} \prod^{\mathrm{RLD}} x=x_{k}$ for every indexed family x of proper filters.
Proof. It follows from $\left\langle\operatorname{Pr}_{k}\right\rangle\left\{\uparrow^{R L D\left(\lambda i \in \operatorname{dom} \mathcal{X}: \operatorname{Base}\left(\mathcal{X}_{i}\right)\right)} \Pi X \mid X \in x\right\}=\Pi\{X \mid X \in x\}=x$.
Conjecture 161. $\operatorname{GR} \operatorname{StarComp}\left(a ; \lambda i \in n: f_{i} \sqcup g_{i}\right)=\operatorname{GR} \operatorname{StarComp}(a ; f) \sqcup \operatorname{GR} \operatorname{StarComp}(a ; g)$ for a multireloid a and indexed families f and g of multireloids where $\operatorname{Src} f_{i}=\operatorname{Src} g_{i}$ and Dst $f_{i}=\operatorname{Dst} g_{i}$.

Conjecture 162. GR $\operatorname{StarComp}(a \sqcup b ; f)=\operatorname{GR} \operatorname{StarComp}(a ; f) \sqcup \operatorname{GR} \operatorname{StarComp}(b ; f)$ if f is a reloid and a, b are multireloids of the same form, composable with f.
Theorem 163. $\prod^{\mathrm{RLD}} A=\bigsqcup\left\{\prod^{\mathrm{RLD}} a \mid a \in \prod_{i \in \operatorname{dom} A}\right.$ atoms $\left.A_{i}\right\}$ for every indexed family A of filters on powersets.

Proof. Obviously $\prod^{\mathrm{RLD}} A \sqsupseteq \bigsqcup\left\{\prod^{\mathrm{RLD}} a \mid a \in \prod_{i \in \operatorname{dom} A}\right.$ atoms $\left.A_{i}\right\}$.
Reversely, let $K \in \bigsqcup\left\{\prod^{\mathrm{RLD}} a \mid a \in \prod_{i \in \operatorname{dom} A}\right.$ atoms $\left.A_{i}\right\}$. Then for every $i \in \operatorname{dom} A$ we have $K \in \prod^{\mathrm{RLD}} a_{i}$ for every $a_{i} \in \prod_{j \in \operatorname{dom} A}$ atoms A_{j} and so $K \sqsupseteq \prod X_{i}$ for some $X_{i} \in \prod_{j \in \operatorname{dom} A} A_{j}$. Consequently $K \sqsupseteq \bigsqcup_{i \in \operatorname{dom} A} \Pi X_{i}=\bigsqcup_{i \in \operatorname{dom} A} \quad \prod_{j \in \operatorname{dom} A} X_{i, j}=\prod_{j \in \operatorname{dom} A} \bigsqcup_{i \in \operatorname{dom} A} X_{i, j} \sqsupseteq$ $\prod_{j \in \operatorname{dom} A} Z_{j}$ for some $Z_{j} \in A_{j}$. So $K \in \prod^{\mathrm{RLD}} A$.

Theorem 164. Let a, b be indexed families of filters on powersets of the same form \mathfrak{A}. Then

$$
\prod^{\mathrm{RLD}} a \sqcap \prod^{\mathrm{RLD}} b=\prod_{i \in \operatorname{dom} \mathfrak{A}}^{\mathrm{RLD}}\left(a_{i} \sqcap b_{i}\right)
$$

Proof.

$$
\begin{aligned}
& \prod^{\mathrm{RLD}} a \sqcap \prod^{\mathrm{RLD}} b= \\
& \left\{\uparrow \mathrm{RLD}(\mathfrak{A})(P \cap Q) \mid P \in \prod^{\mathrm{RLD}} a, Q \in \prod^{\mathrm{RLD}} b\right\}= \\
& \left\{\uparrow \operatorname{RLD}(\mathfrak{A})\left(\prod p \cap \prod q\right) \mid p \in \prod a, q \in \prod b\right\}= \\
& \left\{\uparrow \operatorname{RLD}(\mathfrak{A})\left(\prod_{i \in \operatorname{dom} \mathfrak{A}}\left(p_{i} \cap q_{i}\right)\right) \mid p \in \prod a, q \in \prod b\right\}= \\
& \left\{\uparrow \mathrm{RLD}(\mathfrak{A}) \prod r \mid r \in \prod_{i \in \operatorname{dom} \mathfrak{A}}\left(a_{i} \sqcap b_{i}\right)\right\}= \\
& \prod_{i \in \operatorname{dom} \mathfrak{A}}^{\mathrm{RLD}}\left(a_{i} \sqcap b_{i}\right) \text {. }
\end{aligned}
$$

Theorem 165. If $S \in \mathscr{P} \prod_{i \in \operatorname{dom} \mathfrak{A}} \mathfrak{F}\left(\mathfrak{A}_{i}\right)$ where \mathfrak{A} is an indexed family of sets, then

$$
\left\lceil\left\{\prod^{\mathrm{RLD}} a \mid a \in S\right\}=\prod_{i \in \operatorname{dom} \mathfrak{A}}^{\mathrm{RLD}}\left\lceil\left\langle\uparrow^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}\right\rangle \operatorname{Pr}_{i} S\right.\right.
$$

Proof. Special case when S is empty is obvious. Let $S \neq \emptyset$.
$\Pi\left\langle\uparrow \mathcal{F}^{\left(\mathfrak{A}_{i}\right)}\right\rangle \operatorname{Pr}_{i} S \sqsubseteq \Pi\left\langle\uparrow \mathfrak{F}\left(\mathfrak{A}_{i}\right)\right\rangle\left\{a_{i}\right\}=a_{i}$ for every $a \in S$ because $a_{i} \in \operatorname{Pr}_{i} S$. Thus
$\prod_{i \in \operatorname{dom} \mathfrak{A}}^{\mathrm{RLD}} \Pi\left\langle\uparrow^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}\right\rangle \operatorname{Pr}_{i} S \sqsubseteq \prod^{\mathrm{RLD}} a ;$

$$
\prod\left\{\prod^{\mathrm{RLD}} a \mid a \in S\right\} \sqsupseteq \prod_{i \in \operatorname{dom} \mathfrak{A}}^{\mathrm{RLD}} \prod\left\langle\uparrow \mathfrak{F}^{\left(\mathfrak{A}_{i}\right)}\right\rangle \operatorname{Pr}_{i} S .
$$

Now suppose $F \in \prod_{i \in \operatorname{dom} \mathfrak{A}}^{\mathrm{RLD}} \Pi\left\langle\uparrow^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}\right\rangle \operatorname{Pr}_{i} S$. Then there exist $X \in\left(\lambda i \in \operatorname{dom} \mathfrak{A}: \Pi\left\langle\uparrow^{\mathfrak{F}\left(\mathfrak{A}_{i}\right)}\right\rangle \operatorname{Pr}_{i} S\right)$ such that $F \supseteq \prod X$. It is enough to prove that there exist $a \in S$ such that $F \in \prod^{\text {RLD }} a$. For this it is enough $\Pi X \in \prod^{\mathrm{RLD}} a$.

Really, $X_{i} \in \Pi\left\langle\uparrow^{\mathfrak{F}}\left(\mathfrak{A}_{i}\right)\right\rangle \operatorname{Pr}_{i} S$ thus $X_{i} \in a_{i}$ for every $a \in S$ because $\operatorname{Pr}_{i} S \supseteq\left\{a_{i}\right\}$.
Thus $\Pi X \in \prod^{\mathrm{RLD}} a$.
Definition 166. I call a multireloid convex iff it is a join of reloidal products.
Conjecture 167. $f \sqsubseteq \prod^{\mathrm{RLD}} a \Leftrightarrow \forall i \in$ arity $f: \operatorname{Pr}_{i}^{\mathrm{RLD}} f \sqsubseteq a_{i}$ for every multireloid f and $a_{i} \in \mathfrak{F}\left((\text { form } f)_{i}\right)$ for every $i \in \operatorname{arity} f$.

14 Subatomic product of funcoids

Lemma 168. $\Pi\left\langle\uparrow^{A}\right\rangle\left\langle\operatorname{Pr}_{i}\right\rangle a=\left\langle\operatorname{Pr}_{i}\right\rangle a$ for every multireloid a and $i \in$ arity a.
Proof. $\Pi \uparrow^{A}\left\langle\operatorname{Pr}_{i}\right\rangle a \supseteq\left\langle\operatorname{Pr}_{i}\right\rangle a$ is obvious.
$\left\langle\operatorname{Pr}_{i}\right\rangle a$ is a filter base. Really, let $P, Q \in\left\langle\operatorname{Pr}_{i}\right\rangle a$. Then $P=\operatorname{dom} X_{0}, Q=\operatorname{dom} X_{1}$ where X_{0}, $X_{1} \in a$. Then $P \cap Q=\operatorname{dom} X_{0} \cap \operatorname{dom} X_{1} \supseteq \operatorname{dom}\left(X_{0} \cap X_{1}\right) \in\left\langle\operatorname{Pr}_{i}\right\rangle a$.

Let $K \in \Pi\left\langle\uparrow^{A}\right\rangle\left\langle\operatorname{Pr}_{i}\right\rangle a$. Then by properties of generalized filter bases there exists $X \in a$ such that $K \supseteq\left\langle\uparrow{ }^{A}\right\rangle\left\langle\operatorname{Pr}_{i}\right\rangle X$ that is $K \in \operatorname{Pr}_{i} X$ and consequently $K \in\left\langle\operatorname{Pr}_{i}\right\rangle a$.

Definition 169. Let f is an indexed family of funcoids. Then $\prod^{(A)} f$ (subatomic product) is a funcoid $\prod_{i \in \operatorname{dom} f} \operatorname{Src} f_{i} \rightarrow \prod_{i \in \operatorname{dom} f}$ Dst f_{i} such that for every $a \in \operatorname{atoms} 1^{\operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Src} f_{i}\right)}$, $b \in$ atoms $1^{\operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \text { Dst } f_{i}\right)}$

$$
a\left[\prod^{(A)} f\right] b \Leftrightarrow \forall i \in \operatorname{dom} f: \operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} b
$$

Proposition 170. The funcoid $\prod^{(A)} f$ exists.
Proof. To prove that $\prod^{(A)} f$ exists we need to prove (for every $a \in \operatorname{atoms} 1^{\operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Src} f_{i}\right)}$, $b \in$ atoms $\left.1^{\operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \text { Dst } f_{i}\right)}\right)$
$\forall X \in a, Y \in b \exists x \in$ atoms $\uparrow^{\mathrm{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Src} f_{i}\right)} X, y \in$ atoms $\uparrow^{\mathrm{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Dst} f_{i}\right)} Y: x\left[\prod^{(A)} f\right] y \Rightarrow$ $a\left[\prod^{(A)} f\right] b$.
Let $\forall X \in a, Y \in b \exists x \in \operatorname{atoms} \uparrow \operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Src} f_{i}\right) X, y \in \operatorname{atoms} \uparrow{ }^{\operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Dst} f_{i}\right)} Y: x\left[\prod^{(A)} f\right] y$. Then
$\forall X \in a, Y \in b \exists x \in$ atoms $\uparrow \operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Src} f_{i}\right) X, y \in$ atoms $\uparrow \operatorname{RLD}\left(\lambda i \in \operatorname{dom} f: \operatorname{Dst} f_{i}\right) Y \forall i \in \operatorname{dom} f:$ $\operatorname{Pr}_{i} x\left[f_{i}\right] \operatorname{Pr}_{i} y$.
Then because $\operatorname{Pr}_{i} x \in$ atoms $\uparrow^{\operatorname{Src}} f_{i} \operatorname{Pr}_{i} X$ and likewise for y :
Then $\forall X \in a, Y \in b \forall i \in \operatorname{dom} f \exists x \in$ atoms $\uparrow{ }^{\operatorname{Src}} f_{i} \operatorname{Pr}_{i} X, y \in \operatorname{atoms} \uparrow^{\text {Dst }} f_{i} \operatorname{Pr}_{i} Y: x\left[f_{i}\right] y$.
Thus $\forall X \in a, Y \in b \forall i \in \operatorname{dom} f: \uparrow^{\operatorname{Src} f_{i}} \operatorname{Pr}_{i} X\left[f_{i}\right] \uparrow{ }^{\text {Dst }} f_{i} \operatorname{Pr}_{i} Y$;
$\forall X \in a, Y \in b \forall i \in \operatorname{dom} f: \operatorname{Pr}_{i} X\left[f_{i}\right]^{*} \operatorname{Pr}_{i} Y$.
Then $\forall X \in\left\langle\operatorname{Pr}_{i}\right\rangle a, Y \in\left\langle\operatorname{Pr}_{i}\right\rangle b: X\left[f_{i}\right]^{*} Y$.
Thus by the lemma $\forall X \in \Pi\left\langle\uparrow \operatorname{Src} f_{i}\right\rangle\left\langle\operatorname{Pr}_{i}\right\rangle a, Y \in \Pi\left\langle\uparrow\right.$ Dst $\left.f_{i}\right\rangle\left\langle\operatorname{Pr}_{i}\right\rangle b: X\left[f_{i}\right]^{*} Y$.
$\forall X \in \operatorname{Pr}_{i} a, Y \in \operatorname{Pr}_{i} b: X\left[f_{i}\right]^{*} Y$.
Thus $\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} b$. So $\forall i \in \operatorname{dom} f: \operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} b$ and thus $a\left[f \times{ }^{(A)} g\right] b$.
Remark 171. It seems that the proof of the above theorem can be simplified using cross-composition product.

Theorem 172. $\prod_{i \in n}^{(A)}\left(g_{i} \circ f_{i}\right)=\prod^{(A)} g \circ \prod^{(A)} f$ for indexed (by an index set n) families f and g of funcoids such that $\forall i \in n$: Dst $f_{i}=\operatorname{Src} g_{i}$.

Proof. Let a, b are ultrafilters on $\prod_{i \in n} \operatorname{Src} f_{i}$ and $\prod_{i \in n}$ Dst g_{i} correspondingly,
$a\left[\prod_{i \in n}^{(A)}\left(g_{i} \circ f_{i}\right)\right] b \Leftrightarrow \forall i \in \operatorname{dom} f: \operatorname{Pr}_{i} a\left[g_{i} \circ f_{i}\right] \operatorname{Pr}_{i} b \Leftrightarrow \forall i \in \operatorname{dom} f \exists C \in \operatorname{atoms} \widetilde{\mathfrak{F}}^{\Pi_{i \in n^{\text {Dst } f_{i}}}}:$
$\left(\operatorname{Pr}_{i} a\left[f_{i}\right] C \wedge C\left[g_{i}\right] \operatorname{Pr}_{i} b\right) \Leftrightarrow \forall i \in \operatorname{dom} f \exists c \in$ atoms ${ }^{R L D}(\lambda i \in n: \operatorname{Dst} f):\left(\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} c \wedge \operatorname{Pr}_{i} c\left[g_{i}\right] \operatorname{Pr}_{i} b\right) \Leftarrow$ $\exists c \in$ atoms ${ }^{\operatorname{RLD}(\lambda i \in n: \operatorname{Dst} f)} \forall i \in \operatorname{dom} f:\left(\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} c \wedge \operatorname{Pr}_{i} c\left[g_{i}\right] \operatorname{Pr}_{i} b\right) \Leftrightarrow \exists c \in$ atoms $^{\operatorname{RLD}(\lambda i \in n: \operatorname{Dst} f)}$:
$\left(a\left[\prod^{(A)} f\right] c \wedge c\left[\prod^{(A)} g\right] b\right) \Leftrightarrow a\left[\prod^{(A)} g \circ \prod^{(A)} f\right] b$.
Let

$$
\forall i \in \operatorname{dom} f \exists c \in \text { atoms }{ }^{\operatorname{RLD}(\lambda i \in n: \text { Dst } f)}:\left(\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} c \wedge \operatorname{Pr}_{i} c\left[g_{i}\right] \operatorname{Pr}_{i} b\right) .
$$

Then there exists $c^{\prime} \in$ atoms ${ }^{\operatorname{RLD}(\lambda i \in n: \operatorname{Dst} f)}$ such that

$$
\forall i \in \operatorname{dom} f:\left(\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} c_{i}^{\prime} \wedge \operatorname{Pr}_{i} c_{i}^{\prime}\left[g_{i}\right] \operatorname{Pr}_{i} b\right)
$$

Then take $c^{\prime \prime}=\prod^{\text {RLD }} c^{\prime}$. Then $\forall i \in \operatorname{dom} f:\left(\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} c_{i}^{\prime \prime} \wedge \operatorname{Pr}_{i} c_{i}^{\prime \prime}\left[g_{i}\right] \operatorname{Pr}_{i} b\right)$. Thus

$$
\exists c \in \operatorname{atoms}{ }^{\operatorname{RLD}(\lambda i \in n: \text { Dst } f)} \forall i \in \operatorname{dom} f:\left(\operatorname{Pr}_{i} a\left[f_{i}\right] \operatorname{Pr}_{i} c \wedge \operatorname{Pr}_{i} c\left[g_{i}\right] \operatorname{Pr}_{i} b\right) .
$$

We have $a\left[\prod_{i \in n}^{(A)}\left(g_{i} \circ f_{i}\right)\right] b \Leftrightarrow a\left[\prod^{(A)} g \circ \prod^{(A)} f\right] b$.
Proposition 173. $\prod^{\mathrm{RLD}} a\left[\prod^{(A)} f\right] \prod^{\mathrm{RLD}} b \Leftrightarrow \forall i \in \operatorname{dom} f: a_{i}\left[f_{i}\right] b_{i}$ for an indexed family f of funcoids and indexed families a abd b of filters where $a_{i} \in \mathfrak{F}(\operatorname{Src} f), b_{i} \in \mathfrak{F}($ Dst $f)$ for every $i \in \operatorname{dom} f$.

Proof. $\prod^{\mathrm{RLD}} a\left[\prod^{(A)} f\right] \prod^{\mathrm{RLD}} b \Leftrightarrow \exists x \in \operatorname{atoms} \Pi^{\mathrm{RLD}} a, y \in \operatorname{atoms} \prod^{\mathrm{RLD}} b: x\left[\prod^{(A)} f\right] y \Leftrightarrow$ $\exists x \in$ atoms $\prod^{\mathrm{RLD}} a, y \in$ atoms $\prod^{\mathrm{RLD}} b \forall i \in \operatorname{dom} f: \operatorname{Pr}_{i} x\left[f_{i}\right] \operatorname{Pr}_{i} y \Leftrightarrow \exists x \in$ atoms $\prod^{\mathrm{RLD}} a$, $y \in$ atoms $\prod^{\text {RLD }} b \forall i \in \operatorname{dom} f: a_{i}\left[f_{i}\right] b_{i} \Leftrightarrow \forall i \in \operatorname{dom} f: a_{i}\left[f_{i}\right] b_{i}$.

15 On products and projections

Conjecture 174. For discrete funcoids $\prod^{(C)}$ and $\prod^{(A)}$ coincide with the conventional product of binary relations.

15.1 Staroidal product

Let f is a staroid components of whose form are boolean lattices.
Definition 175. Staroidal projection of a staroid

$$
\operatorname{Pr}_{k}^{\text {Strd }} f=\langle f\rangle_{k}\left(\lambda i \in(\text { arity } f) \backslash\{k\}: 1^{(\text {form } f)_{i}}\right)
$$

Proposition 176. Pr_{k} GR $\prod^{\text {Strd }} x=\star x_{k}$.
Proof. Pr_{k} GR $\prod^{\operatorname{Strd}} x=\operatorname{Pr}_{k}\left\{L \in \mho^{\text {dom } x} \mid \forall i \in \operatorname{dom} x: x_{i} \not \not L_{i}\right\}=? ?=\left\{l \mid x_{k} \nprec l\right\}=\star x_{k}$.
Proposition 177. $\operatorname{Pr}_{k}^{\operatorname{Strd}} \prod^{\text {Strd }} x=x_{k}$ if x is an indexed family of proper filters, and $k \in \operatorname{dom} x$.
Proof. $\operatorname{Pr}_{k}^{\text {Strd }} \prod^{\text {Strd }} x=\left\langle\prod^{\text {Strd }} x\right\rangle_{k}\left(\lambda i \in(\operatorname{dom} x) \backslash\{k\}: 1^{(\text {form } x)_{i}}\right)$.
Thus $\partial \operatorname{Pr}_{k}^{\text {Strd }} \prod^{\text {Strd }} x=\left(\operatorname{val} \prod^{\text {Strd }} x\right)_{k}\left(\lambda i \in(\operatorname{dom} x) \backslash\{k\}: 1^{(\text {form } x)_{i}}\right)=\{X \in$ $\left.\left(\text { form } \prod^{\text {Strd }} x\right)_{k} \mid\left(\lambda i \in(\operatorname{dom} x) \backslash\{k\}: 1^{(\text {form } x)_{i}}\right) \cup\{(k ; X)\} \in \mathrm{GR} \prod^{\text {Strd }} x\right\}=\left\{X \in\right.$ Base $x_{k} \mid(\forall i \in$ $\left.\left.(\operatorname{dom} x) \backslash\{k\}: 1^{(\text {form } x)_{i}} \not \not x_{i}\right) \wedge X \nsucc x_{k}\right\}=\left\{X \in \operatorname{Base} x_{k} \mid X \nsim x_{k}\right\}=\partial x_{k}$.

Consequently $\operatorname{Pr}_{k}^{\text {Strd }} \prod^{\text {Strd }} x=x_{k}$.

15.2 Cross-composition product of pointfree funcoids

Zero morphisms of the category of pointfree funcoids are ??.
Proposition 178. Values x_{i} (for every $i \in \operatorname{dom} x$) can be restored from the value of $\prod^{(C)} x$ provided that x is an indexed family of non-zero pointfree funcoids if $\operatorname{Src} f_{i}$ (for every $i \in n$) is an atomic lattice and every Dst f_{i} has greatest element.

Proof. $\left\langle\Pi^{(C)} x\right\rangle \Pi^{\mathrm{Strd}} p=\prod_{i \in n}^{\mathrm{FCD}}\left\langle x_{i}\right\rangle p_{i}$ by the theorem 145 .
Since $x_{i} \neq 0$ there exist p such that $\left\langle x_{i}\right\rangle p_{i} \neq 0$. Take $k \in n, p_{i}^{\prime}=p_{i}$ for $i \neq k$ and $p_{k}^{\prime}=q$ for an arbitrary value q; then (using the staroidal projections from the previous subsection)

$$
\left\langle x_{k}\right\rangle q=\operatorname{Pr}_{k}^{\mathrm{Strd}} \prod_{i \in n}^{\mathrm{FCD}}\left\langle x_{i}\right\rangle p_{i}^{\prime}=\operatorname{Pr}_{k}^{\mathrm{Strd}}\left\langle\prod^{(C)} x\right\rangle \prod^{\mathrm{Strd}} p^{\prime}
$$

So the value of x can be restored from $\prod^{(C)} x$ by this formula.

15.3 Subatomic product

Proposition 179. Values x_{i} (for every $i \in \operatorname{dom} x$) can be restored from the value of $\prod^{(A)} x$ provided that x is an indexed family of non-zero funcoids.

Proof. Fix $k \in \operatorname{dom} f$. Let for some filters x and y

$$
a=\left\{\begin{array}{ll}
1^{\mathfrak{F}(\operatorname{Base}(x))} & \text { if } i \neq k ; \\
x & \text { if } i=k
\end{array} \quad \text { and } \quad b= \begin{cases}1^{\mathfrak{F}(\operatorname{Base}(y))} & \text { if } i \neq k \\
y & \text { if } i=k .\end{cases}\right.
$$

Then $a_{k}\left[x_{k}\right] b_{k} \Leftrightarrow \forall i \in \operatorname{dom} f: a_{i}\left[x_{i}\right] b_{i} \Leftrightarrow \prod^{\mathrm{RLD}} a\left[\Pi^{(A)} x\right] \prod^{\text {RLD }} b$. So we have restored x_{k} from $\prod^{(A)} x$.

Conjecture 180. For every funcoid $f: \Pi A \rightarrow \prod B$ (where A and B are indexed families of sets) there exists a funcoid $\operatorname{Pr}_{k}^{(A)} f$ defined by the formula

$$
x\left[\operatorname{Pr}_{k}^{(A)} f\right] y \Leftrightarrow \prod^{\operatorname{RLD}}\left(\{ \begin{array} { l l }
{ 1 ^ { \mathfrak { F } (\operatorname { B a s e } (x)) } } & { \text { if } i \neq k ; } \\
{ x } & { \text { if } i = k }
\end{array}) [f] \prod ^ { \operatorname { R L D } } \left(\left\{\begin{array}{ll}
1^{\mathfrak{F}(\operatorname{Base}(y))} & \text { if } i \neq k ; \\
y & \text { if } i=k
\end{array}\right)\right.\right.
$$

for:

1. every filters x and y;
2. every principal filters x and y;
3. every atomic filters x and y.

15.4 Other

Conjecture 181. Values x_{i} (for every $i \in \operatorname{dom} x$) can be restored from the value of $\prod^{(C)} x$ provided that x is an indexed family of non-zero reloids.

Conjecture 182. Values x_{i} (for every $i \in \operatorname{dom} x$) can be restored from the value of $\prod^{(\mathrm{DP})} x$ provided that x is an indexed family of non-zero funcoids.

Definition 183. Let $f \in \mathscr{P}\left(Z^{L^{Y}}\right)$ where Z is a set and Y is a function.

$$
\operatorname{Pr}_{k}^{(D)} f=\operatorname{Pr}_{k}\{\text { curry } z \mid z \in f\} .
$$

Proposition 184. $\operatorname{Pr}_{k}^{(D)} \prod^{(D)} F=F_{k}$ for every indexed family F of non-empty relations.
Proof. Obvious.
Corollary 185. GR $\operatorname{Pr}_{k}^{(D)} \prod^{(D)} F=\operatorname{GR} F_{k}$ and form $\operatorname{Pr}_{k}^{(D)} \prod^{(D)} F=$ form F_{k} for every indexed family F of non-empty anchored relations.

16 Coordinate-wise continuity

Theorem 186. Let μ and ν are indexed (by some index set n) families of endo-morphisms for a partially ordered dagger category with star-morphisms, and $f_{i} \in \operatorname{Hom}\left(\operatorname{Ob} \mu_{i} ; \operatorname{Ob} \nu_{i}\right)$ for every $i \in n$. Then:

1. $\forall i \in n: f_{i} \in \mathrm{C}\left(\mu_{i} ; \nu_{i}\right) \Rightarrow \prod^{(C)} f \in \mathrm{C}\left(\prod^{(C)} \mu ; \prod^{(C)} \nu\right)$;
2. $\forall i \in n: f_{i} \in \mathrm{C}^{\prime}\left(\mu_{i} ; \nu_{i}\right) \Rightarrow \Pi^{(C)} f \in \mathrm{C}^{\prime}\left(\prod^{(C)} \mu ; \Pi^{(C)} \nu\right)$;
3. $\forall i \in n: f_{i} \in \mathrm{C}^{\prime \prime}\left(\mu_{i} ; \nu_{i}\right) \Rightarrow \prod^{(C)} f \in \mathrm{C}^{\prime \prime}\left(\prod^{(C)} \mu ; \Pi^{(C)} \nu\right)$.

Proof. Using the corollary 129:

1. $\forall i \in n: f_{i} \in \mathrm{C}\left(\mu_{i} ; \nu_{i}\right) \Leftrightarrow \forall i \in n: f_{i} \circ \mu_{i} \sqsubseteq \nu_{i} \circ f_{i} \Rightarrow \prod_{i \in n}^{(C)}\left(f_{i} \circ \mu_{i}\right) \sqsubseteq \prod_{i \in n}^{(C)}\left(\nu_{i} \circ f_{i}\right) \Leftrightarrow$ $\left(\Pi^{(C)} f\right) \circ\left(\Pi^{(C)} \mu\right) \sqsubseteq\left(\Pi^{(C)} \nu\right) \circ\left(\Pi^{(C)} f\right) \Leftrightarrow \Pi^{(C)} f \in \mathrm{C}\left(\prod^{(C)} \mu ; \Pi^{(C)} \nu\right)$.
2. $\forall i \in n: f_{i} \in \mathrm{C}^{\prime}\left(\mu_{i} ; \nu_{i}\right) \Leftrightarrow \forall i \in n: \mu_{i} \sqsubseteq f_{i}^{\dagger} \circ \nu_{i} \circ f_{i} \Rightarrow \prod^{(C)} \mu \sqsubseteq \prod_{i \in n}^{(C)}\left(f_{i}^{\dagger} \circ \nu_{i} \circ f_{i}\right) \Leftrightarrow \prod^{(C)} \mu \sqsubseteq$ $\left(\prod_{i \in n}^{(C)} f_{i}^{\dagger}\right) \circ\left(\prod_{i \in n}^{(C)} \nu_{i}\right) \circ\left(\prod_{i \in n}^{(C)} f_{i}\right) \Leftrightarrow \prod^{(C)} \mu \sqsubseteq\left(\prod_{i \in n}^{(C)} f_{i}\right)^{\dagger} \circ\left(\prod_{i \in n}^{(C)} \nu_{i}\right) \circ\left(\prod_{i \in n}^{(C)} f_{i}\right) \Leftrightarrow$ $\prod^{(C)} f \in \mathrm{C}^{\prime}\left(\prod^{(C)} \mu ; \prod^{(C)} \nu\right)$.
3. $\forall i \in n: f_{i} \in \mathrm{C}^{\prime \prime}\left(\mu_{i} ; \nu_{i}\right) \Leftrightarrow \forall i \in n: f_{i} \circ \mu_{i} \circ f_{i}^{\dagger} \sqsubseteq \nu_{i} \Rightarrow \prod_{i \in n}^{(C)}\left(f_{i} \circ \mu_{i} \circ f_{i}^{\dagger}\right) \sqsubseteq \prod_{i \in n}^{(C)} \nu_{i} \Leftrightarrow$ $\prod_{i \in n}^{(C)} f_{i} \circ \prod_{i \in n}^{(C)} \mu_{i} \circ \prod_{i \in n}^{(C)} f_{i}^{\dagger} \sqsubseteq \prod_{i \in n}^{(C)} \nu_{i} \Leftrightarrow \prod_{i \in n}^{(C)} f_{i} \circ \prod_{i \in n}^{(C)} \mu_{i} \circ\left(\prod_{i \in n}^{(C)} f_{i}\right)^{\dagger} \sqsubseteq \prod_{i \in n}^{(C)} \nu_{i} \Leftrightarrow$ $\prod_{i \in n}^{(C)} f_{i} \in \mathrm{C}^{\prime \prime}\left(\prod^{(C)} \mu ; \prod^{(C)} \nu\right)$.

Theorem 187. Let μ and ν are indexed (by some index set n) families of endo-funcoids, and $f_{i} \in \mathrm{FCD}\left(\mathrm{Ob} \mu_{i} ; \mathrm{Ob} \nu_{i}\right)$ for every $i \in n$. Then:

1. $\forall i \in n: f_{i} \in \mathrm{C}\left(\mu_{i} ; \nu_{i}\right) \Rightarrow \prod^{(A)} f \in \mathrm{C}\left(\prod^{(A)} \mu ; \prod^{(A)} \nu\right)$;
2. $\forall i \in n: f_{i} \in \mathrm{C}^{\prime}\left(\mu_{i} ; \nu_{i}\right) \Rightarrow \prod^{(A)} f \in \mathrm{C}^{\prime}\left(\prod^{(A)} \mu ; \Pi^{(A)} \nu\right)$;
3. $\forall i \in n: f_{i} \in \mathrm{C}^{\prime \prime}\left(\mu_{i} ; \nu_{i}\right) \Rightarrow \prod^{(A)} f \in \mathrm{C}^{\prime \prime}\left(\prod^{(A)} \mu ; \prod^{(A)} \nu\right)$.

Proof. Similar to the previous theorem.

17 Counter-examples

Example 188. $\uparrow \uparrow \downarrow f \neq f$ for some staroid f whose form is a family of filters on a set.
Proof. Let GR $f=\left\{\mathcal{A} \in \mathfrak{F}(\mho) \mid \uparrow^{\mho} \operatorname{Cor} \mathcal{A} \nVdash \Delta\right\}$ for some infinite set \mho where Δ is some non-principal f.o. on \mho.
$A \sqcup B \in \operatorname{GR} f \Leftrightarrow \uparrow^{\mho} \operatorname{Cor}(A \sqcup B) \nsucc \Delta \Leftrightarrow \uparrow^{\mho} \operatorname{Cor} A \sqcup \uparrow^{\mho} \operatorname{Cor} B \not \subset \Delta \Leftrightarrow(\operatorname{Cor} A \sqcup \operatorname{Cor} B) \sqcap \Delta \neq 0^{\mathfrak{F}(\mho)} \Leftrightarrow$ $\uparrow^{\mho} \operatorname{Cor} A \cap \Delta \neq 0^{\widetilde{F}(\mho)} \vee \uparrow^{\operatorname{Base}(B)} \operatorname{Cor} B \cap \Delta \neq 0^{\mathfrak{F}(\mho)} \Leftrightarrow A \in f \vee B \in f$.

Obviously $0^{\mathcal{F}(\mho)} \notin \mathrm{GR} f$. So f is a free star. But free stars ere essentially the same as 1 -staroids. $\operatorname{GR} \downarrow f=\partial \Delta . \operatorname{GR} \Uparrow \uparrow \downarrow f=\star \Delta \neq f$.

For the below counter-examples we will define a staroid ϑ with arity $\vartheta=\mathbb{N}$ and $G R \vartheta \in \mathscr{P}\left(\mathbb{N}^{\mathbb{N}}\right)$ (based on a suggestion by Andreas Blass):

$$
A \in \operatorname{GR} \vartheta \Leftrightarrow \sup _{i \in \mathbb{N}} \operatorname{card}\left(A_{i} \cap i\right)=\mathbb{N} \wedge \forall i \in \mathbb{N}: A_{i} \neq \emptyset
$$

Proposition 189. ϑ is a staroid.
Proof. $(\operatorname{val} \vartheta)_{i} L=\mathscr{P} \mathbb{N} \backslash\{\emptyset\}$ for every $L \in(\mathscr{P} \mathbb{N})^{\mathbb{N} \backslash\{i\}}$ if $\forall i \in \mathbb{N}: L_{i} \neq \emptyset$. Otherwise $(\operatorname{val} \vartheta)_{i} L=\emptyset$. Thus $(\operatorname{val} \vartheta)_{i} L$ is a free star. So ϑ is a staroid.

Proposition 190. ϑ is a completary staroid.
Proof. $A_{0} \sqcup A_{1} \in \mathrm{GR} \vartheta \Leftrightarrow A_{0} \cup A_{1} \in \mathrm{GR} \vartheta \Leftrightarrow \sup _{i \in \mathbb{N}} \operatorname{card}\left(\left(A_{0} i \cup A_{1} i\right) \cap i\right)=\mathbb{N} \wedge \forall i \in \mathbb{N}$: $A_{0} i \cup A_{1} i \neq \emptyset \Leftrightarrow \sup _{i \in \mathbb{N}} \operatorname{card}\left(\left(A_{0} i \cap i\right) \cup\left(A_{1} i \cap i\right)\right)=\mathbb{N} \wedge \forall i \in \mathbb{N}: A_{0} i \cup A_{1} i \neq \emptyset$.

If $A_{0} i=\emptyset$ then $A_{0} i \cap i=\emptyset$ and thus $A_{1} i \cap i \sqsupseteq A_{0} i \cap i$. Thus we can select $c(i)=1$ in such a way that $\forall d \in\{0,1\}: \operatorname{card}\left(A_{c(i)} \cap i\right) \sqsupseteq \operatorname{card}\left(A_{d} \cap i\right)$ and $A_{c(i)} i \neq \emptyset$. (Consider the case $A_{0} i, A_{1} i \neq \emptyset$ and the similar cases $A_{0} i=\emptyset$ and $A_{1} i=\emptyset$.)

So $A_{0} \sqcup A_{1} \in f \Leftrightarrow \sup _{i \in \mathbb{N}} \operatorname{card}\left(A_{c(i)} i \cap i\right)=\mathbb{N} \wedge A_{c(i)} i \neq \emptyset \Leftrightarrow\left(\lambda i \in n\right.$: $\left.A_{c(i)} i\right) \in \vartheta$.
Thus ϑ is completary.
Obvious 191. ϑ is non-zero.
Example 192. For every family $a=a_{i \in \mathbb{N}}$ of atomic f.o. Πa is not an atom nor of the poset of staroids neither of the poset of completary staroids of the form $\lambda i \in \mathbb{N}$: $\operatorname{Base}\left(a_{i}\right)$.

Proof. It's enough to prove $\vartheta \nsupseteq \prod a$.
Let $\uparrow^{\mathbb{N}} R_{i}=a_{i}$ is a_{i} is principal and $R_{i}=\mathbb{N} \backslash i$ if a_{i} is non-principal.
We have $\forall i \in \mathbb{N}$: $R_{i} \in a_{i}$.
We have $R \notin \vartheta$ because $\sup _{i \in \mathbb{N}} \operatorname{card}\left(R_{i} \cap i\right)=0$.
$R \in \prod a$ because $\forall X \in a_{i}: X \cap R_{i} \neq \emptyset$.
So $\vartheta \nsupseteq \prod a$.
Remark 193. At http://mathoverflow.net/questions/60925/special-infinitary-relations-andultrafilters there are a proof for arbitary infinite form, not just for \mathbb{N}.

Conjecture 194. There exists a non-completary staroid.
Conjecture 195. There exists a pre-staroid which is not a staroid.
Conjecture 196. The set of staroids of the form A^{B} where A and B are sets is atomic.
Conjecture 197. The set of staroids of the form A^{B} where A and B are sets is atomistic.
Conjecture 198. The set of completary staroids of the form A^{B} where A and B are sets is atomic.
Conjecture 199. The set of completary staroids of the form A^{B} where A and B are sets is atomistic.

18 Conjectures

Remark 200. Below I present special cases of possible theorems. The theorems may be generalized after the below special cases are proved.

Conjecture 201. For every two a. funcoids; b. of reloids f and g we have:

1. (RLD $)_{\text {in }} a\left[f \times{ }^{(\mathrm{DP})} g\right](\mathrm{RLD})_{\text {in }} b \Leftrightarrow a\left[f \times^{(C)} g\right] b$ for every funcoids $a \in \mathrm{FCD}(\operatorname{Src} f ; \operatorname{Src} g)$, $b \in \mathrm{FCD}$ (Dst f; Dst g);
2. (RLD) $)_{\text {out }} a\left[f \times{ }^{(\mathrm{DP})} g\right](\mathrm{RLD})_{\text {out }} b \Leftrightarrow a\left[f \times{ }^{(C)} g\right] b$ for every funcoids $a \in \mathrm{FCD}(\operatorname{Src} f ; \operatorname{Src} g)$, $b \in \operatorname{FCD}($ Dst $f ;$ Dst $g)$;
3. (FCD) $a\left[f \times{ }^{(C)} g\right](\mathrm{FCD}) b \Leftrightarrow a\left[f \times{ }^{(\mathrm{DP})} g\right] b$ for every reloids $a \in \operatorname{RLD}(\operatorname{Src} f ; \operatorname{Src} g)$, $b \in \operatorname{RLD}($ Dst $f ;$ Dst $g)$.

Definition 202. A staroid on power sets is such a staroid f that every (form $f)_{i}$ is a lattice of all subsets of some set.

Conjecture 203. $\prod^{\text {Strd }} a \nsucc \prod^{\text {Strd }} b \Leftrightarrow b \in \prod^{\text {Strd }} a \Leftrightarrow a \in \prod^{\text {Strd }} b \Leftrightarrow a \not ㇒ b$ for every indexed families a and b of filters on powersets of some sets.

Conjecture 204. Let f is a staroid on powersets and $a \in \prod_{i \in \operatorname{arity} f} \operatorname{Src} f_{i}, b \in \prod_{i \in \operatorname{arity} f} \operatorname{Dst} f_{i}$. Then

$$
\prod^{\text {Strd }} a\left[\prod^{(C)} f\right] \prod^{\text {Strd }} b \Leftrightarrow \forall i \in n: a_{i}\left[f_{i}\right] b_{i}
$$

Proposition 205. The conjecture 203 is a consequence of the conjecture 177.
Proof. Applying the definition of staroidal product and the theorem 177 we get:

$$
\prod^{\text {Strd }} a \neq \prod^{\text {Strd }} b \Leftrightarrow(\text { theorem } I 77) \Leftrightarrow b \in \prod^{\text {Strd }} a \Leftrightarrow a \not ㇒ b
$$

Similarly $\Pi^{\text {Strd }} a \nsucc \Pi^{\text {Strd }} b \Leftrightarrow a \in \Pi^{\text {Strd }} b$.
Proposition 206. The conjecture 204 is a consequence of the conjecture 203.
Proof. $\Pi^{\text {Strd }} a\left[\Pi^{(C)} f\right] \Pi^{\text {Strd }} b \Leftrightarrow \Pi^{\text {Strd }} b \notin\left\langle\Pi^{(C)} f\right\rangle \Pi^{\text {Strd }} a \Leftrightarrow \Pi^{\text {Strd }} b \neq \prod_{i \in n}^{\text {Strd }}\left\langle f_{i}\right\rangle a_{i} \Leftrightarrow$ $\forall i \in n: b_{i} \not \nsim\left\langle f_{i}\right\rangle a_{i} \Leftrightarrow \forall i \in n: a_{i}\left[f_{i}\right] b_{i}$.

Conjecture 207. For every indexed families a and b of filters and an indexed family f of pointfree funcoids we have

Conjecture 208. Displaced product of funcoids is a quasi-cartesian functions. (Consider also a similar conjecture for reloids.)

Strenghtening of an above result:
Conjecture 209. If a is a completary staroid and Dst f_{i} is a starrish poset for every $i \in n$ then $\operatorname{StarComp}(a ; f)$ is a completary staroid.

Strenghtenings of above results:

Conjecture 210.

1. $\Pi^{(D)} F$ is a pre-staroid if every F_{i} is a pre-staroid.
2. $\Pi^{(D)} F$ is a completary staroid if every F_{i} is a completary staroid.

Conjecture 211. If f_{1} and f_{2} are funcoids, then there exists a pointfree funcoid $f_{1} \times f_{2}$ such that

$$
\left\langle f_{1} \times f_{2}\right\rangle x=\bigsqcup\left\{\left\langle f_{1}\right\rangle X \times{ }^{\mathrm{FCD}}\left\langle f_{2}\right\rangle X \mid X \in \text { atoms } x\right\}
$$

for every ultrafilter x.

18.1 Informal questions

Are the above defined products categorical direct products for some category?
Do products of funcoids and reloids coincide with Tychonov topology?
Limit and generalized limit for multiple arguments.
Is product of connected spaces connected?
Product of T_{0}-separable is T_{0}, of T_{1} is T_{1} ?
Relationships between multireloids and staroids.
Generalize the section "Specifying funcoids by functions or relations on atomic filter objects" from [3].

Generalize "Relationships between funcoids and reloids" in [I].

Bibliography

[1] Victor Porton. Funcoids and reloids. At http://www.mathematics21.org/binaries/funcoids-reloids.pdf.
[2] Victor Porton. A new kind of product of ordinal number of relations having ordinal numbers of arguments. At http://www.mathematics21.org/binaries/assoc.pdf.
[3] Victor Porton. Pointfree funcoids. At http://www.mathematics21.org/binaries/pointfree.pdf.
[4] Victor Porton. Filters on posets and generalizations. International Journal of Pure and Applied Mathematics, 74(1):55-119, 2012.

