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Abstract

First I define a product of two funcoids. Then I define multifuncoids and staroids as gen-

eralizations of funcoids. Using staroids I define a product of an arbitrary (possibly infinite)

family of funcoids and some other products.

1 Draft status

It is a rough draft.

This article is outdated. Read the book instead.

2 Notation

This article presents a generalization of concepts from [1] and [3].

In this article I will use ⊒ to denote order in a poset and ⊓, ⊔ to denote meets and joins on a
semilattice. I reserve ⊇, ∩, and ∪ for set-theoretic supset-relation, intersection, and union.

For a poset A I will denote Least(A) the set of least elements of A. (This set always has either
one or zero elements.)

With this notation we do not need the concept of filter objects ([4]), we will use the standard
set of filters, but the order ⊑ on the lattice of filters will be opposite the set theoretic inclusion ⊆
of filters.

3 Product of two funcoids

3.1 Lemmas

Lemma 1. Let A, B, C are sets, f ∈FCD(A;B), g ∈FCD(B;C), h∈ FCD(A;C). Then

g ◦ f � h⇔ g � h ◦ f−1.

Proof. See [1]. �

Lemma 2. Let A, B, C are sets, f ∈RLD(A;B), g ∈RLD(B;C), h∈RLD(A;C). Then

g ◦ f � h⇔ g � h ◦ f−1.

Proof. See [1]. �

Lemma 3. f ◦ (A×FCDB)=A×FCD 〈f 〉B for elements A∈A and B∈B of some posets A, B with
least elements and f ∈ FCD(A;B).

Proof. 〈f ◦ (A×FCDB)〉X =
(
{

〈f 〉B if X � A
0 if X ≍A

)

= 〈A×FCD 〈f 〉B〉X . �
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3.2 Definition

Definition 4. I will call a quasi-invertible category a partially ordered dagger category such that
it holds

g ◦ f � h⇔ g � h ◦ f † (1)

for every morphisms f ∈Hom(A;B), g ∈Hom(B;C), h ∈Hom(A;C), where A, B, C are objects
of this category.

Inverting this formula, we get f † ◦ g† � h† ⇔ g† � f ◦ h†. After replacement of variables, this
gives: f † ◦ g � h⇔ g� f ◦h

As it follows from [1], the category of funcoids and the category of reloids are quasi-invertible
(taking f †= f−1). Moreover by [3] the category of pointfree funcoids between lattices of filters on
boolean lattices are quasi-invertible.

Definition 5. The cross-composition product of morphisms f and g of a quasi-invertible category
is the pointfree funcoid Hom(Src f ; Src g)→Hom(Dst f ;Dst g) defined by the formulas (for every
a∈Hom(Src f ; Src g) and b∈Hom(Dst f ;Dst g)):

〈

f ×(C) g
〉

a= g ◦ a ◦ f † and
〈(

f ×(C) g
)

−1
〉

b= g† ◦ b◦ f.

The cross-composition product is a pointfree funcoid from Hom(Src f ;Src g) to Hom(Dst f ;Dst g).
We need to prove that it is really a pointfree funcoid that is that

b� 〈f ×(C) g
〉

a⇔ a� 〈(f ×(C) g
)

−1
〉

b.

This formula means b� g ◦a◦ f †⇔a� g† ◦ b◦ f and can be easily proved applying the formula (1)
two times.

Proposition 6. a
[

f ×(C) g
]

b⇔ a ◦ f †� g† ◦ b.

Proof. From the lemma. �

Proposition 7. a
[

f ×(C) g
]

b⇔ f
[

a×(C) b
]

g.

Proof. f
[

a×(C) b
]

g⇔ f ◦ a†� b† ◦ g⇔ a ◦ f †� g† ◦ b⇔ a
[

f ×(C) g
]

b. �

Theorem 8.
(

f ×(C) g
)

†= f †×(C) g†.

Proof. For every funcoids a∈Hom(Src f ; Src g) and b∈Hom(Dst f ;Dst g) we have:
〈(

f ×(C) g
)

†
〉

b= g† ◦ b◦ f = g† ◦ b ◦ f =
〈

f †×(C) g†
〉

b.
〈((

f ×(C) g
)

†
)

†
〉

a=
〈

f ×(C) g
〉

a= g ◦ a ◦ f †=
〈(

f †×(C) g†
)

†
〉

a. �

Theorem 9. Let f , g are morphisms of a quasi-invertible category where Dst f and Dst g are f.o.
on boolean lattices. Then for every f.o. A0∈F(Src f), B0∈F(Src g)

〈

f ×(C) g
〉

(A0×FCDB0)= 〈f 〉A0×FCD 〈g〉B0.

Proof. For every atom a1×FCDb1 (a1∈atomsDst f, b1∈atomsDst g) of the lattice of funcoids we have:

a1×FCD b1� 〈f ×(C) g
〉

(A0×FCDB0)⇔A0×FCDB0

[

f ×(C) g
]

a1×FCD b1⇔ (A0×FCDB0) ◦ f †�
g† ◦ (a1 ×FCD b1) ⇔ 〈f 〉A0 ×FCD B0 � a1 ×FCD 〈g†〉b1 ⇔ 〈f 〉A0 � a1 ∧ 〈g†〉b1 � B0 ⇔ 〈f 〉A0 � a1 ∧

〈g〉B0 � b1 ⇔ 〈f 〉A0 ×FCD 〈g〉B0 � a1 ×FCD b1. Thus
〈

f ×(C) g
〉

(A0 ×FCD B0) = 〈f 〉A0 ×FCD 〈g〉B0

because the lattice FCD(F(Dst f);F(Dst g)) is atomically separable (corollary 64 in [3]). �

Proposition 10. A0×FCDB0

[

f ×(C) g
]

A1×FCDB1⇔A0 [f ]A1∧B0 [g]B1 for every A0∈F(Src f),

A1∈F(Dst f), B0∈F(Src g), B1∈F(Dst g).

Proof. A0 ×FCD B0

[

f ×(C) g
]

A1 ×FCD B1 ⇔ A1 ×FCD B1 � 〈

f ×(C) g
〉

(A0 ×FCD B0) ⇔

A1×FCDB1� 〈f 〉A0×FCD 〈g〉B0⇔A1� 〈f 〉A0∧B1� 〈g〉B0⇔A0 [f ]A1∧B0 [g]B1. �
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4 Function spaces of posets

Definition 11. Let Ai is a family of posets indexed by some set domA. We will define order of
families of posets by the formula

a⊑ b⇔∀i∈domA: ai⊑ bi.

I will call this new poset A=
∏

A the function space of posets and the above order product order .

Proposition 12. The function space for posets is also a poset.

Proof.

Reflexivity. Obvious.

Antisymmetry. Obvious.

Transitivity. Obvious. �

Obvious 13. A has least element iff each Ai has a least element. In this case

Least(A)=
∏

i∈domA

Least(Ai).

Proposition 14. a� b⇔∃i∈domA: ai� bi for every a, b∈
∏

A.

Proof. a � b ⇔ ∃c ∈
∏

A: (c ⊑ a ∧ c ⊑ b) ⇔ ∃c ∈
∏

A∀i ∈ dom A: (ci ⊑ ai ∧ ci ⊑ bi) ⇔
∀i∈domA∃x∈

∏

A: (x⊑ ai∧ x⊑ bi)⇔∀i∈ domA: ai� bi. �

Proposition 15.

1. If Ai are join-semilattices then A is a join-semilattice and

A⊔B=λi∈domA:Ai⊔Bi. (2)

2. If Ai are meet-semilattices then A is a meet-semilattice and

A⊓B=λi∈domA:Ai⊓Bi. (3)

Proof. It is enough to prove the formula (2).
It’s obvious that λi∈ domA:Ai⊔Bi⊇A,B.
Let C ⊇A, B. Then (for every i ∈ dom A) Ci ⊇Ai and Ci ⊇Bi. Thus Ci ⊇Ai ⊔Bi that is

C ⊇λi∈ domA:Ai⊔Bi. �

Corollary 16. If Ai are lattices then A is a lattice.

Obvious 17. If Ai are distributive lattices then A is a distributive lattice.

Obvious 18. If Ai are (co-)brouwerian lattices then A is a (co-)brouwerian lattice.

Proposition 19. If Ai are boolean lattices then
∏

A is a boolean lattice.

Proof. We need to prove only that every element a∈
∏

A has a complement. But this complement
is evidently λi∈dom a: ai. �

Proposition 20. If Ai are lattices then for every S ∈P
∏

A

1.
⊔

S=λi∈domA:
⊔

{xi | x∈S} whenever
⊔

{xi | x∈S} exists;

2.
d

S=λi∈domA:
d

{xi | x∈S} whenever
d

{xi | x∈S} exists.

Proof. It’s enough to prove the first formula.
(λi∈domA:

⊔

{xi | x∈S})i=
⊔

{xi | x∈S}⊒ xi for every x∈S and i∈ domA.
Let y ⊒ x for every x ∈ S. Then yi ⊒ xi for every i ∈ dom A and thus yi ⊒

⊔

{xi | x ∈ S} =
(λi∈domA:

⊔

{xi | x∈S})i that is y ⊒λi∈domA:
⊔

{xi | x∈S}.
Thus

⊔

S=λi∈domA:
⊔

{xi | x∈S} by the definition of join. �
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Corollary 21. If Ai are complete lattices then A is a complete lattice.

Proposition 22. If each Ai is a separable poset with least element (for some index set n) then
∏

A is a separable poset.

Proof. Let a� b. Then ∃i∈ domA: ai� bi. So ∃x∈Ai: (x� ai∧x≍ bi) (or vice versa).
Take y=(((domA) \ {i})×{0})∪{(i;x)}. Then y � a and y≍ b. �

Obvious 23. If every Ai is a poset with least element 0i, then the set of atoms of
∏

A is

{({k}× atomsAk)∪ (λi∈ (domA) \ {k}: 0i) | k ∈domA}.

Proposition 24. If every Ai is an atomistic poset with least element 0i, then
∏

A is an atomistic
poset.

Proof. xi=
⊔

atoms xi for every xi∈Ai. Thus

x=λi∈dom x:xi=
⊔

i∈dom x

atomsxi=
⊔

i∈dom x

λj ∈ domx:

{

xi if j= i

0i if j � i.

Take join two times. �

Corollary 25. If Ai are atomistic complete lattices, then
∏

A is atomically separable.

Proof. Proposition 14 in [4]. �

Proposition 26. Let (Ai∈n;Zi∈n) is a family of filtrators. Then (
∏

A;
∏

Z) is a filtrator.

Proof. We need to prove that
∏

Z is a sub-poset of
∏

A. First
∏

Z⊆
∏

A because Zi ⊆ Ai

for each i∈n.
Let A, B ∈

∏

Z and A ⊆
∏

ZB. Then ∀i ∈ n:Ai ⊆Zi Bi; consequently ∀i ∈ n:Ai ⊆Ai Bi that is
A⊆

∏

AB. �

Proposition 27. Let (Ai∈n;Zi∈n) is a family of filtrators.

1. The filtrator (
∏

A;
∏

Z) is (finitely) join-closed if every (Ai;Zi) is (finitely) join-closed.

2. The filtrator (
∏

A;
∏

Z) is (finitely) meet-closed if every (Ai;Zi) is (finitely) meet-closed.

Proof. Let every (Ai; Zi) is finitely join-closed. Let A, B ∈
∏

Z. Then A ⊔
∏

Z B = λ ∈ n:

Ai⊓ZiBi=λ∈n:Ai⊔AiBi=A⊔
∏

AB.
Let now every (Ai; Zi) is finitely join-closed. Let S ∈ P

∏

Z. Then
⊔

∏

Z
S = λi ∈ dom A:

⊔Zi {xi | x∈S}=λi∈domA:
⊔Ai {xi | x∈S}=

⊔

∏

A
S.

The rest follows from symmetry. �

Proposition 28. If each (Ai;Zi) where i∈n (for some index set n) is a down-aligned filtrator with
separable core (for some index set n) then (

∏

A;
∏

Z) is with separable core.

Proof. Let a� b. Then ∃i∈n: ai� bi. So ∃x∈Zi: (x� ai∧x≍ bi) (or vice versa).
Take y=((n \ {i})×{0})∪{(i;x)}. Then we have y � a and y≍ b and y ∈Z. �

Proposition 29. Let every Ai is a bounded lattice. Every (Ai;Zi) is a central filtrator iff (
∏

A;
∏

Z) is a central filtrator.

Proof. x ∈ Z(
∏

A) ⇔ ∃y ∈
∏

A:
(

x ⊓ y = 0
∏

A ∧ x ⊔ y = 1
∏

A
)

⇔ ∃y ∈
∏

A∀i ∈ dom A:

(xi ⊓ yi = 0Ai ∧ xi ⊔ yi = 1Ai)⇔ ∀i ∈ dom A∃y ∈ Ai: (xi ⊓ yi = 0Ai ∧ xi ⊔ yi = 1Ai)⇔ ∀i ∈ dom A:
xi∈Z(Ai). �

Proposition 30. For every element a of a product filtrator (
∏

A;
∏

Z):

1. up a=
∏

i∈dom a
up ai;
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2. down a=
∏

i∈dom a
down ai.

Proof. We will prove only the first as the second is dual.
up a = {c ∈

∏

Z | c ⊒ a} = {c ∈
∏

Z | ∀i ∈ dom a: ci ⊒ ai} = {c ∈
∏

Z | ∀i ∈ dom a:
ci∈ up ai}=

∏

i∈dom a
up ai. �

Proposition 31. If every (Ai; Zi) is a filtered complete lattice filtrator, then (
∏

A;
∏

Z) is a
filtered complete lattice filtrator.

Proof. That
∏

A is a complete lattice is already proved above. We have for every a∈
∏

Ad∏

A
up a = λi ∈ dom A:

d
{xi | x ∈ up a} = λi ∈ dom A:

d
{x | x ∈ up ai} = λi ∈ dom A:d

up ai=λi∈domA: ai= a. �

Obvious 32. If every (Ai; Zi) is a prefiltered complete lattice filtrator, then (
∏

A;
∏

Z) is a
prefiltered complete lattice filtrator.

Proposition 33. Let Ai is a non-empty poset. Every (Ai; Zi) is a semifiltered complete lattice
filtrator iff (

∏

A;
∏

Z) is a semifiltered complete lattice filtrator.

Proof. up a⊇ up b⇔ λi ∈ domA: up ai ⊇ up bi⇒ λi ∈ domA: ai ⊑ bi⇔ a⊑ b for every a, b ∈
∏

A

(used the fact that up ai� 0 because up is injective). �

Proposition 34. Let (Ai;Zi) are filtrators and each Zi is a complete lattice. For a∈
∏

A:

1. Cor a=λi∈ dom a:Cor ai;

2. Cor′ a=λi∈dom a:Cor′ ai.

Proof. We will prove only the first, because the second is dual.

Cora=
d∏

Z upa=λi∈doma:
dZi {xi | x∈upa}=λi∈doma:

dZi {x | x∈upai}=λi∈doma:dZi up ai=λi∈dom a:Cor ai. �

Proposition 35. If each (Ai; Zi) is a filtrator with (co-)separable core, then (
∏

A;
∏

Z) is a
filtrator with (co-)separable core.

Proof. We will prove only for separable core, as co-separable core is dual.
x ≍

∏

A y⇔ ∀i ∈ dom A: xi ≍Ai yi⇒ ∀i ∈ dom A∃X ∈ up xi:X ≍Ai yi⇔ ∃X ∈ up x∀i ∈ dom A:

Xi≍Ai yi⇔∃X ∈upx:X ≍
∏

A y for every x, y ∈
∏

A. �

Obvious 36.

1. If each (Ai;Zi) is a down-aligned filtrator, then (
∏

A;
∏

Z) is a down-aligned filtrator.

2. If each (Ai;Zi) is an up-aligned filtrator, then (
∏

A;
∏

Z) is an up-aligned filtrator.

Proposition 37. If every bi is substractive from ai where a and b are n-indexed families of
distributive lattices with least elements (where n is an index set), then a \ b=λi∈n: ai \ bi.

Proof. We need to prove (λi∈n: ai \ bi)⊓ b=0 and a⊔ b= b⊔ (λi∈n: ai \ bi).
Really, (λi ∈ n: ai \ bi) ⊓ b = λi ∈ n: (ai \ bi) ⊓ bi = 0 and b ⊔ (λi ∈ n: ai \ bi) = λi ∈ n:

bi⊔ (ai \ bi)=λi∈n: bi⊔ ai= a⊔ b. �

Proposition 38. If every Ai is a distributive lattice, then a \∗ b=λi∈domA:ai \∗ bi for every a,

b∈
∏

A whenever every ai \∗ bi is defined.

Proof. We need to prove that λi∈domA: ai \∗ bi=
d

{z ∈
∏

A | a⊑ b⊔ z}.
To prove it is enough to show ai \∗ bi =

d
{zi | z ∈

∏

A, a ⊑ b ⊔ z} that is ai \∗ bi =d
{z ∈Ai | ai⊑ bi⊔ z} what is true by definition. �

Proposition 39. If every Ai is a distributive lattice with least element, then a#b= λi ∈ domA:
ai#bi for every a, b∈

∏

A whenever every ai#bi is defined.
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Proof. We need to prove that λi∈domA: ai#bi=
d

{z ∈
∏

A | z ⊑ a∧ z≍ b}.
To prove it is enough to show ai#bi =

d
{zi | z ∈

∏

A, z ⊑ a ∧ z ≍ b} that is ai#bi =d
{z ∈Ai | z ⊑ ai∧∀j ∈domA: zj≍ bj} that is ai#bi=

d
{z ∈Ai | z ⊑ ai∧ z≍ bi} (take zi=0 for

j � i) what is true by definition. �

Proposition 40. Let every Ai is a poset with least element and ai
∗ is defined. Then a∗=λi∈n:ai

∗.

Proof. We need to prove that λi∈domA:ai
∗=
⊔

{c∈A | c≍a}. To prove this it is enough to show
that ai

∗=
⊔

{ci | c∈A, c≍ a} that is ai
∗=

⊔

{ci | c∈A,∀j ∈n: cj≍ aj} that is ai
∗=

⊔

{ci | c∈A,

ci≍ ai} (take ci=0 for j � i) that is ai
∗=

⊔

{c∈A | c≍ ai} what is true by definition. �

Corollary 41. Let every Ai is a poset with least element and ai
+ is defined. Then a+=λi∈n:ai

+.

Proof. By duality. �

5 Definition of staroids

Let n be a set. As an example, n may be an ordinal, n may be a natural number, considered as a
set by the formula n= {0,	 , n− 1}. Let A=Ai∈n is a family of posets indexed by the set n.

Definition 42. I will call an anchored relation a pair f = (form f ;GR f) of a family form(f) of
sets indexed by the some index set and a relation GR(f)∈P

∏

form(f). I call GR(f) the graph

of the anchored relation f . I denote Anch(A) the set of small anchored relations of the form A.

Definition 43. An anchored relation on powersets is an anchored relation f such that every
(form f)i is a powerset.

I will denote arity f = dom form f .

Definition 44. Every set of anchored relations of the same form constitutes a poset by the formula
f ⊑ g⇔GR f ⊆GR g.

Definition 45. An anchored relation is an anchored relation between posets when every (form f)i
is a poset.

Definition 46. Let f is an anchored relation. For every i∈arity f and L∈
∏

((form f)|(arity f)\{i})

(val f)iL= {X ∈ (form f)i | L∪{(i;X)}∈GR f }

(“val” is an abbreviation of the word “value”.)

Obvious 47. X ∈ (val f)iL⇔L∪ {(i;X)}∈GR f .

Proposition 48. f can be restored knowing form(f) and (val f)i for some i∈n.

Proof. GR f = {K ∈
∏

form f | K ∈ GR f } = {L ∪ {(i; X)} | L ∈
∏

(form f)|(arity f)\{i},

X ∈ (form f)i, L∪{(i;X)}∈GR f }= {L∪{(i;X)} | L∈
∏

(form f)|(arity f)\{i},X ∈ (val f)iL}. �

Definition 49. A pre-staroid is an anchored relation f between poset such that (val f)iL is a free
star for every i∈ arity f , L∈

∏

(form f)|(arity f)\{i}.

Definition 50. A staroid is a pre-staroid whose graph is an upper set (on the poset if anchored
relations of the form of this pre-staroid).

Proposition 51. If L∈
∏

form f and Li=0(form f)i for some i∈ arity f then L� f if f is an pre-
staroid.

Proof. Let K =L|(arity f)\{i}. We have 0 � (val f)iK; K ∪ {(i; 0)} � f ; L � f . �
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Definition 52. Infinitary pre-staroid is such a staroid whose arity is infinite; finitary pre-staroid

is such a staroid whose arity is finite.

Next we will define completary staroids . First goes the general case, next simpler case for the
special case of join-semilattices instead of arbitrary posets.

Definition 53. A completary staroid is a poset relation conforming to the formulas:

1. ∀K ∈
∏

form f : (K ⊒L0∧K ⊒L1⇒K ∈GR f)⇔∃c ∈ {0, 1}n: (λi ∈ n:Lc(i)i) ∈GR f for
every L0, L1∈

∏

form f .

2. If L∈
∏

form f and Li=0(form f)i for some i∈ arity f then L � f .

Lemma 54. Every completary staroid is an upper set.

Proof. Let f is a completary staroid. Let L0 ⊑ L1 for some L0, L1 ∈
∏

form f and L0 ∈ f .
Then taking c = n × {0} we get λi ∈ n: Lc(i)i = λi ∈ n: L0i = L0 ∈ f and thus L1 ∈ f because
L1⊒L0∧L1⊒L1. �

Proposition 55. A relation between posets whose form is a family of join-semilattices is a com-
pletary staroid iff both:

1. L0⊔L1∈GR f⇔∃c∈ {0, 1}n: (λi∈n:Lc(i)i)∈GR f for every L0, L1∈
∏

form f .

2. If L∈
∏

form f and Li=0(form f)i for some i∈ arity f then L � f .

Proof. Let the formulas (1) and (2) hold. Then f is an upper set: Let L0 ⊑ L1 for some L0,

L1∈
∏

form f and L0∈ f . Then taking c=n×{0} we get λi∈n:Lc(i)i=λi∈n:L0i=L0∈ f and
thus L1=L0⊔L1∈ f .

Thus to finish the proof it is enough to show that

L0⊔L1∈GR f⇔∀K ∈
∏

form f : (K ⊒L0∧K ⊒L1⇒K ∈GR f)

under condition that GR f is an upper set. But this is obvious. �

Proposition 56. A completary staroid is a staroid.

Proof. Let f is a completary staroid.
Let K ∈

∏

i∈(arity f)\{i}
(form f)i. Let L0 = K ∪ {(i; X0)}, L1 =K ∪ {(i; X1)} for some X0,

X1∈Ai. Then X0⊔X1∈ (val f)iK⇔L0⊔L1∈GR f⇔∃k ∈{0, 1}:K ∪{(i;Xk)}∈GR f⇔K ∪{(i;
X0)}∈ f ∨K ∪{(i;X1)}∈GR f⇔X0∈ (val f)iK ∨X1∈ (val f)iK.

So (val f)iK is a free star (taken in account that Ki=0(form f)i⇒ f � K).
f is an upper set by the lemma. �

Lemma 57. Every finitary pre-staroid is completary.

Proof. ∃c ∈ {0, 1}n: (λi ∈ n: Lc(i)i) ∈GR f ⇔∃c ∈ {0, 1}n−1: ({(n − 1; L0(n − 1))} ∪ (λi ∈ n − 1:

Lc(i)i)) ∈ GR f ∨ ({(n − 1; L1(n − 1))} ∪ (λi ∈ n − 1: Lc(i)i)) ∈ GR f ⇔ ∃c ∈ {0, 1}n−1:

L0(n − 1) ∈ (val f)n−1(λi ∈ n − 1: Lc(i)i) ∨ L1(n − 1) ∈ (val f)n−1(λi ∈ n − 1: Lc(i)i) ⇔ ∃c ∈ {0,

1}n−1∀K∈
∏

form f : (K ⊒L0(n−1)∨K⊒L1(n−1)⇒K∈ (val f)n−1(λi∈n−1:Lc(i)i))⇔∃c∈{0,

1}n−1∀Kn−1 ∈ (form f)n−1: (Kn−1⊒ L0(n− 1) ∨Kn−1⊒ L1(n− 1)⇒{(n− 1;K)} ∪ (λi ∈ n− 1:
Lc(i)i))∈GR f⇔	 ⇔∀K ∈

∏

form f : (K ⊒L0∧K ⊒L1⇒K ∈GR f). �

Exercise 1. Prove the simpler special case of the above theorem when the form is a family of join-semilattices.

Theorem 58. For finite arity the following are the same:

1. pre-staroids;

2. staroids;
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3. completary staroids.

Proof. f is a finitary pre-staroid ⇒ f is a finitary completary staroid.
f is a finitary completary staroid ⇒ f is a finitary staroid.
f is a finitary staroid ⇒ f is a finitary pre-staroid. �

Definition 59. We will denote the set of staroids, pre-staroids, and completary staroids of a form
A correspondingly as Strd(A), pStrd(A), and cStrd(A).

6 Upgrading and downgrading a set regarding a filtrator

Let fix a filtrator (A;Z).

Definition 60. �f = f ∩Z for every f ∈PA (downgrading f).

Definition 61. ⇈f = {L∈A | upL⊆ f } for every f ∈PZ (upgrading f).

Obvious 62. a∈⇈f⇔ up a⊆ f for every f ∈PZ and a∈A.

Proposition 63. �⇈f = f if f is an upper set.

Proof. �⇈f =⇈f ∩Z= {L∈Z | upL⊆ f }= {L∈Z | upL∈ f }= f ∩PZ= f . �

6.1 Upgrading and downgrading staroids

Let fix a family (A;Z) of filtrators.
For a graph f of a staroid define �f and ⇈f taking the filtrator of (

∏

A;
∏

Z).
For a staroid f define:

form�f =Z and GR�f =�GR f ;

form⇈f =A and GR⇈f =⇈GR f.

Proposition 64. (val�f))iL=(val f)iL∩Zi for every L∈
∏

Z|(arity f)\{i}.

Proof. (val � f))iL = {X ∈ (form f)i | L ∪ {(i; X)} ∈ GR f ∩
∏

Z} = {X ∈ Zi | L ∪ {(i;
X)}∈GR f }=(val f)iL∩Zi. �

Proposition 65. Let (Ai; Zi) are finitely join-closed filtrators with both the base and the core
being join-semilattices. If f is a staroid of the form A, then �f is a staroid of the form Z.

Proof. Let f is a a staroid.
We need to prove that (val �f)iL is a free star. It follows from the last proposition and the

fact that it is join-closed. �

Proposition 66.
∏Strd

a=⇈�
∏Strd

a if each ai∈Ai (for i∈n where n is some index set) where
Ai is a separable poset with least element.

Proof. ⇈�
∏Strd

a =
{

L ∈
∏

A | L ⊆
∏Strd

a
}

= {L ∈
∏

A | ∀K ∈ L: K � a} =

{L∈
∏

A | L� a}=
∏Strd

a (taken into account that
∏

A is a separable poset). �

6.2 Displacement

Definition 67. Let f is an indexed family of pointfree funcoids. The displacement of the pre-
staroid

p∈A= pStrd(λi∈ dom f :FCD(Src fi; Src gi))
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is defined as a staroid

q ∈B= pStrd(λi∈ dom f :RLD(Src fi; Src gi))

such that

q=⇈(B;C;↑B)�(A;C;↑A)p

where C = pStrd
(
∏

i∈dom f
Src fi;

∏

i∈dom f
Dst fi

)

.

Definition 68. We will define displaced product of a family f of funcoids by the formula:
∏(DP)

f =DP
(

∏(C)
f
)

.

Remark 69. The interesting aspect of displaced product of funcoids is that displaced product of
pointfree funcoids is a funcoid (not just a pointfree funcoid).

7 Multifuncoids

Definition 70. I call an pre-multifuncoid sketch f of the form A (where every Ai is a poset) the
pair (A;α) where for every i∈domα

αi:
∏

A|(domA)\{i}→Ai.

I denote 〈f 〉=α.

Definition 71. A pre-multifuncoid sketch on powersets is a pre-multifuncoid sketch such that
every Ai is the set of filters on a powerset.

Definition 72. I will call a pre-multifuncoid a pre-multifuncoid sketch such that for every i,

j ∈domA and L∈
∏

A

Li� αiL|(domL)\{i}⇔Lj� αjL|(domL)\{j}. (4)

Definition 73. Let A is an indexed family of starrish posets. The pre-staroid corresponding to a
pre-multifuncoid f is [f ] defined by the formula:

form [f ]=A and L∈GR [f ]⇔Li� 〈f 〉iL|(domL)\{i}.

Proposition 74. The pre-staroid corresponding to a pre-multifuncoid is really a pre-staroid.

Proof. By the definition of starrish posets. �

Definition 75. I will call a multifuncoid a pre-multifuncoid to which corresponds a staroid.

Definition 76. I will call a completary multifuncoid a pre-multifuncoid to which corresponds a
completary staroid.

Theorem 77. Fix some indexed family A of boolean lattices. The the set of multifuncoids g

bijectively corresponds to set of pre-staroids f of form A by the formulas:

1. f = [g] for every i∈domA, L∈
∏

A;

2. ∂ 〈g〉iL=(val f)iL.

Proof. Let f is a pre-staroid of the form A. If α is defined by the formula αi L = 〈f 〉iL then
∂αiL=(val f)iL. Then

Li� αiL|(domL)\{i}⇔L∈ f⇔Lj � αjL|(domL)\{j}.

For the staroid f ′ defined by the formula L∈ f ′⇔Li� αiL|(domL)\{i} we have:

L∈ f ′⇔Li∈ ∂αiL|(domL)\{i}⇔Li∈ (val f)iL|(domL)\{i}⇔L∈ f ;
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thus f ′= f .
Let now α is an indexed family of functions αi ∈ Ai

(domA)\{i}
conforming to the formula (4).

Let relation f between posets is defined by the formula L∈ f⇔Li� αiL|(domL)\{i}. Then

(val f)iL= {K ∈Ai | K � αiL|(domL)\{i}}=K = ∂αiL|(domL)\{i}

and thus (val f)iL is a core star that is f is a pre-staroid. For the indexed family α′ defined by
the formula αi

′L= 〈f 〉iL we have

∂αi
′L= ∂ 〈f 〉iL= {K ∈Ai | K � αiL}= ∂αiL;

thus α′=α.
We have shown that these are bijections. �

Theorem 78. 〈f 〉j(L∪ {(i;X ∪Y )})= 〈f 〉j(L∪{(i;X)})∪ 〈f 〉j(L∪{(i;Y )}) for every staroid f

if (form f)j is a boolean lattice and i, j ∈ arity f .

Proof. Let i∈ arity f and L∈
∏

k∈L\{i,j}
Ak. Let Z ∈Ai.

Z � 〈f 〉j(L ∪ {(i; X ∪ Y )}) ⇔ L ∪ {(i; X ∪ Y ), (j; Z)} ∈ f ⇔ X ∪ Y ∈ (val f)i(L ∪ {(j;
Z)})⇔X ∈ (val f)i(L∪{(j;Z)}∨Y ∈ (val f)i(L∪{(j;Z)})⇔L∪{(i;X), (j;Z)}∈ f ∨L∪{(i;Y ),

(j;Z)}∈ f⇔↑AiZ � 〈f 〉j(L∪{(i;X)})∨Z � 〈f 〉j(L∪ {(i;Y )})
Thus 〈f 〉j(L∪{(i;X ∪Y )})= 〈f 〉j(L∪{(i;X)})∪ 〈f 〉j(L∪{(i;Y )}). �

Let us consider the filtrator
(
∏

i∈arity f
F((form f)i);

∏

i∈arity f
(form f)i

)

.

Theorem 79. Let (Ai; Zi) is a family of join-closed down-aligned filtrators filtrators whose both
base and core are join-semilattices. Let f is a pre-staroid of the form Z. Then ⇈f is a staroid of
the form A.

Proof. First prove that GR ⇈f is a pre-staroid. We need to prove that 0 � (GR ⇈f)i (that
is up 0 � (GR f)i what is true by the theorem conditions) and that for every X , Y ∈ Ai and
L∈

∏

i∈(arity f)\{i}
Ai where i∈ arity f

L∪ {(i;X ⊔Y)}∈GR⇈f⇔L∪{(i;X )}∈GR⇈f ∨L∪{(i;Y)}∈GR⇈f.

The reverse implication is obvious. Let L∪{(i;X ⊔Y)}∈GR⇈f . Then for every L∈L and X ∈X ,

Y ∈Y we have and X ⊔ZiY ⊒X ⊔AiY thus L∪ {(i;X ⊔ZiY )}∈GR f and thus

L∪ {(i;X)}∈GR f ∨L∪{(i;Y )}∈GR f

consequently L∪{(i;X )}∈GR⇈f ∨L∪{(i;Y)}∈GR⇈f .
It is left to prove that ⇈f is an upper set, but this is obvious. �

There is a conjecture similar to the above theorems:

Conjecture 80. L∈ [f ]⇒[f ]∩
∏

i∈domA
atomsLi� ∅ for every multifuncoid f of the form whose

elements are atomic posets. (Does this conjecture hold for the special case of form whose elements
are posets on filters on a set?)

Conjecture 81. Let ℧ be a set, F be the set of f.o. on ℧, P be the set of principal f.o. on ℧, let
n be an index set. Consider the filtrator (Fn;Pn). Then if f is a completary staroid of the form
Pn, then ⇈f is a completary staroid of the form Fn.

8 Join of multifuncoids

Pre-multifuncoid sketches are ordered by the formula f ⊑ g⇔〈f 〉⊑ 〈g〉 where ⊑ in the right part
of this formula is the product order. I will denote ⊓, ⊔,

d
,
⊔

(without an index) the order poset
operations on the poset of pre-multifuncoid sketchs.
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Remark 82. To describe this, the definition of order poset is used twice. Let f and g are posets
of the same form A

〈f 〉 ⊑ 〈g〉⇔∀i∈domA: 〈f 〉i⊑〈g〉i and 〈f 〉i⊑〈g〉i⇔∀L∈
∏

A|(domA)\{i}: 〈f 〉iL⊑〈g〉iL.

Theorem 83. f ⊔pFCD(A) g = f ⊔ g for every pre-multifuncoids f and g of the same form A of
distributive lattices.

Proof. αi x=
def

fix⊔ gi x. It is enough to prove that α is a multifuncoid.
We need to prove:

Li� αiL|(domL)\{i}⇔Lj � αjL|(domL)\{j}.

Really, Li � αi L|(domL)\{i}⇔Li � fi L|(domL)\{i}⊔gi L|(domL)\{i}⇔Li � fi L|(domL)\{i}∨

Li � gi L|(domL)\{i}⇔Lj � fj L|(domL)\{j}∨Lj � gj L|(domL)\{j}⇔Lj � fj L|(domL)\{j}⊔

gjL|(domL)\{j}⇔Lj � αjL|(domL)\{j}. �

Theorem 84.
⊔pFCD(A)

F =
⊔

F for every set F of pre-multifuncoids of the same form A of join
infinite distributive complete lattices.

Proof. αi x=
def⊔

f∈F
fix. It is enough to prove that α is a multifuncoid.

We need to prove:

Li� αiL|(domL)\{i}⇔Lj � αjL|(domL)\{j}.

Really, Li � αi L|(domL)\{i}⇔Li � ⊔

f∈F
fi L|(domL)\{i}⇔∃f ∈ F : Li � fi L|(domL)\{i}⇔∃f ∈ F :

Lj � fjL|(domL)\{j}⇔Lj � ⊔f∈F
fjL|(domL)\{j}⇔Lj � αjL|(domL)\{j}. �

Proposition 85. The mapping f� [f ] is an order embedding, for multifuncoids of the form A of
separable starrish posets.

Proof. The mapping f � [f ] is defined because A are starrish poset. The mapping is injective
because A are separable posets. That f � [f ] is a monotone function is obvious. �

Remark 86. This order embedding is useful to describe properties of posets of pre-staroids.

Theorem 87. If f , g are multifuncoids of the same form A of distributive lattices, then
f ⊔pFCD(A) g ∈FCD(A).

Proof. Let A∈
[

f ⊔pFCD(A) g
]

and B ⊒A. Then for every k ∈domA

Ak� (f ⊔pFCD(A) g
)

A|(domA)\{k}=(f ⊔ g)A|(domA)\{k}=f(A|(domA)\{k})⊔ g(A|(domA)\{k}).

Thus Ak � f(A|(domA)\{k}) ∨ Ak � g(A|(domA)\{k}); A ∈ [f ]∨A ∈ [g]; B ∈ [f ]∨B ∈ [g];

Bk � f(B |(domA)\{k}) ∨ Bk � g(B |(domA)\{k}); f(B |(domA)\{k}) ⊔ g(B |(domA)\{k}) = (f ⊔

g)B |(domA)\{k}=
(

f ⊔pFCD(A) g
)

B |(domA)\{k}�Bk. Thus B ∈
[

f ⊔pFCD(A) g
]

. �

Theorem 88. If F is a set multifuncoids of the same form A of join inifinite distributive complete
lattices, then

⊔pFCD(A)
f ∈ FCD(A).

Proof. Let A∈
[

⊔pFCD(A)
f
]

and B ⊒A. Then for every k ∈domA.

Ak� ( ⊔pFCD(A)
F
)

A|(domA)\{k}=(
⊔

F )A|(domA)\{k}=
⊔

f∈F
f(A|(domA)\{k}).

Thus ∃f ∈ F : Ak � f(A|(domA)\{k}); ∃f ∈ F : A ∈ [f ]; B ∈ [f ]∨B ∈ [g]; ∃f ∈ F : Bk �
f(B |(domA)\{k});

⊔

f∈F
f(B |(domA)\{k})=(f ⊔ g)B |(domA)\{k}=

(

⊔pFCD(A)
F
)

B |(domA)\{k}�Bk.

Thus B ∈
[

⊔pFCD(A)
F
]

. �

Conjecture 89. The formula f ⊔FCD(A) g ∈ cFCD(A) is not true in general for completary
multifuncoids (even for multifuncoids on powersets) f and g of the same form A.
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9 Infinite product of elements and filters

Definition 90. Let Ai is a family of elements of a family Ai of posets. The staroidal product
∏Strd(A)

Ai is defined by the formula (for every L∈
∏

A)

form
∏

Strd(A)

A=A and L∈GR
∏

Strd(A)

A⇔∀i∈ domA:Ai� Li.

Theorem 91. Staroidal product is a completary staroid (if our posets are distributive lattices).

Proof. We need to prove

∀i∈domA:Ai� (L0 i⊔L1 i)⇔∃c∈ {0, 1}n∀i∈ domA:Ai� Lc(i) i.

Really, ∀i∈domA:Ai� (L0 i⊔L1 i)⇔∀i∈domA: (Ai� L0 i∨Ai� L1 i)⇔∃c∈{0,1}domA∀i∈domA:
Ai� Lc(i) i. �

Definition 92. Let A is an indexed family of posets with least elements. Then funcoidal product

is defined by the formulas:

form
∏

FCD(A)

A=A and GR

(

∏

FCD(A)

A

)

k

L=

{

Ak if ∀i∈ (domA) \ {k}:Ai� Li

0 otherwise.

Proposition 93.
∏Strd(A)

A=
[

∏FCD(A)
A
]

.

Proof. L ∈ GR
∏Strd(A)

A⇔ ∀i ∈ dom A: Ai � Li ⇔ ∀i ∈ (dom A) \ {k}: Ai � Li ∧ Lk � Ak ⇔

Ak� ( ∏FCD(A)
A
)

k
L⇔L∈GR

[

∏FCD(A)
A
]

. �

Corollary 94. Funcoidal product is a completary multifuncoid.

Proof. It is enough to prove that funcoidal product is a pre-multifuncoid. Really,

Li� GR

(

∏

FCD(A)

A

)

i

L|(domA)\{i}⇔∀i∈domA:Ai� Li⇔Lj � GR

(

∏

FCD(A)

A

)

j

L|(domA)\{j}. �

Theorem 95. If our filtrator (
∏

A;
∏

Z) is with separable core and A∈
∏

Z, then ⇈
∏Strd(Z)

A=
∏Strd(A)

A.

Proof. GR ⇈
∏Strd(Z)

A =
{

L ∈ A | L ⊆
∏Strd(Z)

A
}

= {L ∈ A | ∀K ∈ L, i ∈ dom A:

Ai�Ki}={L∈A | ∀i∈domA,K ∈Li:Ai�K}={L∈A | ∀i∈domA:Ai� Li}=GR
∏Strd(A)

A. �

Proposition 96. Let (
∏

A;
∏

Z) is a meet-closed filtrator. Then �
∏Strd(A)

A=
∏Strd(Z)

A.

Proof. GR �
∏Strd(A)

A = �GR
∏Strd(A)

A = �{L ∈
∏

A | ∀i ∈ dom A: Ai � Li} =

{L∈
∏

A | ∀i∈domA:Ai� Li}∩
∏

Z= {L∈
∏

Z | ∀i∈ domA:Ai� Li}=GR
∏Strd(Z)

A. �

Theorem 97. Let F is a family of sets of filters on distributive lattices with least elements. Let
a∈

∏

F, S ∈P
∏

F is a generalized filter base,
d

S= a. Then

∏

Strd(F)

a=
l
{

∏

Strd(F)

A | A∈S

}

.

Proof. That
∏Strd(F)

a is a lower bound for
{

∏Strd(F)
A | A∈S

}

is obvious.
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Let f is a lower bound for
{

∏Strd(F)
A | A ∈ S

}

. Thus for every A ∈ S we have L ∈ GR f

implies ∀i∈domA:Ai� Li. Then, by properties of generalized filter bases, ∀i∈domA:ai� Li that

is L∈GR
∏Strd(F)

a.

So f ⊆
∏Strd(F)

a. �

Theorem 98. Let F is a family of sets of filters on distributive lattices with least elements. Let
a∈

∏

F, S ∈P
∏

F is a generalized filter base,
d

S= a, f is a staroid of the form
∏

F. Then

∏

Strd(F)

a� f⇔∀A∈S:
∏

Strd(A)

A� f.

Proof. It follows from the previous theorem by properties of generalized filter bases. �

9.1 On products of staroids

Definition 99.
∏(D)

F ={uncurry z | z ∈
∏

F } (reindexation product) for every indexed family
F of relations.

Definition 100. Reindexation product of an indexed family F of anchored relations is defined by
the formulas:

form
∏

(D)

F = uncurry(form ◦F ) and GR
∏

(D)

F =
∏

(D)

(GR ◦F ).

Obvious 101.

1. form
∏(D)

F = {((i; j); (formFi)j) | i∈domF , j ∈ arityFi};

2. GR
∏(D)

F = {{((i; j); (zi)j) | i∈ domF , j ∈ arityFi} | z ∈
∏

(GR ◦F )}.

Proposition 102.
∏(D)

F is an anchored relation if every Fi is an anchored relation.

Proof. We need to prove GR
∏ (D)F ∈P

∏

form
(
∏ (D)F

)

that is

GR
∏ (D)F ⊆

∏

form
(
∏ (D)F

)

{uncurry z | z ∈
∏

(GR ◦F )}∈P
∏

{((i; j); (formFi)j) | i∈domF , j ∈ arityFi};
{uncurry z | z ∈

∏

(GR ◦F )}⊆
∏

{((i; j); (formFi)j) | i∈domF , j ∈ arityFi}
{{((i; j); (zi)j) | i∈domF , j ∈arityFi} | z∈

∏

(GR◦F )}⊆
∏

{((i; j); (formFi)j) | i∈domF ,

j ∈ arityFi};
∀z ∈

∏

(GR ◦F ), i∈domF , j ∈ arityFi: (zi)j ∈ (formFi)j.
Really, zi∈GRFi⊆

∏

(formFi) and thus (zi)j ∈ (formFi)j. �

Remark 103. I suspect that the above proof can be simplified.

Obvious 104. arity
∏(D)

F =
∐

i∈domF
arityFi= {(i; j) | i∈domF , j ∈ arityFi}.

Definition 105. f ×(D) g=
∏(D) Jf ; gK.

Lemma 106.
∏(D)

F is an upper set if every Fi is an upper set.

Proof. We need to prove that
∏(D)

F is an upper set. Let a∈
∏(D)

F and an anchored relation
b⊒ a of the same form as a. We have a=uncurry z for some z ∈

∏

F that is a(i; j)= (zi)j for all
i∈ domF and j ∈ domFi where zi∈Fi. Also b(i; j)⊒ a(i; j). Thus (curry b)i⊒ zi; curry b∈

∏

F

because every Fi is an upper set and so b∈
∏(D)

F . �

Proposition 107. Let F is an indexed family of anchored relations and every (formF )i is a join-
semilattice.

1.
∏(D)

F is a pre-staroid if every Fi is a pre-staroid.

Infinite product of elements and filters 13



2.
∏(D)

F is a staroid if every Fi is a staroid.

3.
∏(D)

F is a completary staroid if every Fi is a completary staroid.

Proof.

1. Let q ∈ arity
∏(D)

F that is q=(i; j) where i∈domF , j ∈ arityFi; let

L∈
∏





(

form
∏

(D)

F

)

|(arity∏(D)F
)

\{q}





that is L(i′;j ′) ∈
(

form
∏(D)

F
)

(i′;j ′)
for every (i′; j ′) ∈

(

arity
∏(D)

F
)

\ {q}, that is

L(i′;j ′)∈ (formFi)j. We have X ∈
(

form
∏(D)

F
)

(i;j)
⇔X ∈ (formFi)j. So

(

val
∏

(D)

F

)

(i;j)

L=

{

X ∈ (formFi)j | L∪{((i; j);X)}∈GR
∏

(D)

F

}

(

val
∏

(D)

F

)

(i;j)

L=
{

X ∈ (formFi)j | ∃z ∈
∏

(GR ◦F ):L∪{((i; j);X)}= uncurry z
}

(

val
∏

(D)

F

)

(i;j)

L=
{

X ∈ (form Fi)j | ∃z ∈
∏

(

(GR ◦ F )|(arity∏(D)F
)

\{(i;j)}

)

, v ∈GR Fi:

(L= uncurry z ∧ vj=X)
}

(

val
∏(D)

F
)

(i;j)
L =

{

X ∈ (form Fi)j | ∃z ∈
∏

(

(GR ◦ F )|(arity∏(D)F
)

\{(i;j)}

)

: L =

uncurry z ∧∃v ∈GRFi: vj=X
}

If ∃z ∈
∏

(

(GR ◦ F )|(arity∏(D)F
)

\{(i;j)}

)

: L = uncurry z is false then
(

val
∏(D)

F
)

(i;j)
L= ∅ is a free star. We can assume it is true. So

(

val
∏

(D)

F

)

(i;j)

L= {X ∈ (formFi)j | ∃v ∈GRFi: vj=X}.

Thus
(

val
∏

(D)

F

)

(i;j)

L= {X ∈ (formFi)j | ∃K ∈ (formFi)|(arityFi)\{j}:K ∪ {(j;X)} ∈GRFi}=

{X ∈(formFi)j | ∃K∈ (formFi)|(arityFi)\{j}:K∪{(j;X)}∈GRFi}={X ∈ (formFi)j | ∃K∈

(formFi)|(arityFi)\{j}:X ∈ (valFj)K}.

Thus A ⊔ B ∈
(

val
∏(D)

F
)

(i;j)
L ⇔ ∃K ∈ (form Fi)|(arityFi)\{j}: A ⊔ B ∈ (val Fj)K ⇔

∃K ∈ (form Fi)|(arity Fi)\{j}: (A ∈ (val Fj) ∨ B ∈ (val Fj)) ⇔ ∃K ∈ (form Fi)|(arityFi)\{j}:

A ∈ (val Fj)K ∨ ∃K ∈ (form Fi)|(arityFi)\{j}: A ∈ (val Fj)K ⇔ A ∈
(

val
∏(D)

F
)

(i;j)
L ∨

B ∈
(

val
∏(D)

F
)

(i;j)
L. Least element 0 is not in

(

val
∏(D)

F
)

(i;j)
L because K ∪ {(j;

0)} � GRFi.

2. From the lemma.

3. We need to prove

L0⊔L1∈GR
∏

(D)

F ⇔∃c∈ {0, 1}arity
∏(D)

F :

(

λi∈ arity
∏

(D)

F :Lc(i)i

)

∈GR
∏

(D)

F
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for every L0, L1∈
∏

form
∏(D)

F that is L0, L1∈
∏

uncurry(form ◦F ).

Really L0⊔L1∈GR
∏(D)

F ⇔L0⊔L1∈{uncurry z | z ∈
∏

(GR ◦F )}.

∃c ∈ {0, 1}arity
∏(D)

F : (λi ∈ n: Lc(i)i) ∈ GR
∏(D)

F ⇔ ∃c ∈ {0, 1}arity
∏(D)

F :
(

λi ∈

arity
∏(D)

F : Lc(i)i
)

∈ {uncurry z | z ∈
∏

(GR ◦ F )}⇔ ∃c ∈ {0, 1}arity
∏(D)

F : curry
(

λi ∈

arity
∏(D)

F :Lc(i)i
)

∈
∏

(GR ◦F )⇔∃c∈ {0, 1}arity
∏(D)

F : curry
(

λ (i; j)∈ arity
∏(D)

F :

Lc(i;j)(i; j)
)

∈
∏

(GR ◦ F ) ⇔ ∃c ∈ {0, 1}arity
∏(D)

F : (λi ∈ dom F : (λj ∈ dom Fi:

Lc(i;j)(i; j))) ∈
∏

(GR ◦ F ) ⇔ ∃c ∈ {0, 1}arity
∏(D)

F∀i ∈ dom F : (λj ∈ dom Fi: Lc(i;j)(i;

j)) ∈ GR Fi ⇔ ∀i ∈ dom F∃c ∈ {0, 1}domFi: (λj ∈ dom Fi: Lc(j)(i; j)) ∈ GR Fi ⇔
∀i ∈ dom F∃c ∈ {0, 1}domFi: (λj ∈ dom Fi: (curry(Lc(j))i)j) ∈ GR Fi ⇔ ∀i ∈ dom F :

(curry(L0)i⊔ curry(L1)i∈GRFi)⇔L0⊔L1∈ {uncurry z | z ∈
∏

(GR ◦F )}. �

For staroids it is defined ordinated product
∏(ord) as defined in [2].

Obvious 108. If f and g are anchored relations and there exists a bijection ϕ from arity g to
arity f such that {F ◦ ϕ | F ∈GR f }=GR g, then:

1. f is a pre-staroid iff g is a pre-staroid.

2. f is a staroid iff g is a staroid.

3. f is a completary staroid iff g is a completary staroid.

Corollary 109. Let F is an indexed family of anchored relations and every (form F )i is a join-
semilattice.

1.
∏(ord)

F is a pre-staroid if every Fi is a pre-staroid.

2.
∏(ord)

F is a staroid if every Fi is a staroid.

3.
∏(ord)

F is a completary staroid if every Fi is a completary staroid.

Proof. Use the fact that GR
∏(ord)

F =
{

F ◦ (
⊕

(dom ◦F ))−1 | F ∈GR
∏(D)

f
}

. �

Definition 110. f ×(ord) g=
∏(ord) Jf ; gK.

Remark 111. If f and g are binary funcoids, then f ×(ord) g is ternary.

10 Star categories

Definition 112. A pre-category with star-morphisms consists of

1. a pre-category C (the base pre-category);

2. a set M (star-morphisms);

3. a function “arity” defined on M (how many objects are connected by this multimorphism);

4. a function Objm: aritym→Obj(C) defined for every m∈M ;

5. a function (star composition) (m; f)� StarComp(m; f) defined for m∈M and f being an
(aritym)-indexed family of morphisms of C such that ∀i∈ aritym:Src fi=Objm i (Src fi is
the source object of the morphism fi) such that arity StarComp(m; f)= aritym

such that it holds:

1. StarComp(m; f)∈M ;

2. (associativiy law )

StarComp(StarComp(m; f); g)= StarComp(m;λi∈ aritym: gi ◦ fi).

Star categories 15



(Here by definition λx∈D:F (x) = {(x;F (x)) | x∈D}.)

The meaning of the set M is an extension of C having as morphisms things with arbitrary
(possibly infinite) indexed set Objm of objects, not just two objects as morphisms of C have only
source and destination.

Definition 113. I will call Objm the form of the star-morphism m.

(Having fixed a pre-category with star-morphisms) I will denote StarHom(P ) the set of star-
morphisms of the form P .

Proposition 114. The sets StarHom(P ) are disjoint (for different P ).

Proof. If two star-morphisms have different forms, they are clearly not equal. �

Definition 115. A category with star-morphisms is a pre-category with star-morphisms whose
base is a category and the following equality (the law of composition with identity) holds for every
multimorphism m:

StarComp(m;λi∈ aritym: idObjm i)=m.

Definition 116. A partially ordered pre-category with star-morphisms is a category with star-
morphisms, whose base pre-category is a partially ordered pre-category and every set

{m∈M | Objm=X}

is partially ordered for every X, such that:

1. m0⊑m1∧ f0⊑ f1⇒StarComp(m0; f0)⊑StarComp(m1; f1) for every m0,m1∈M such that
Objm0=Objm1 and indexed families f0 and f1 of morphisms such that

∀i∈ aritym: Src f0 i= Src f1 i=Objm0 i=Objm1 i and ∀i∈ aritym:Dst f0 i=Dst f1 i.

Definition 117. A quasi-invertible pre-category with star-morphisms is a partially ordered pre-
category with star-morphisms whose base pre-category is a quasi-invertible pre-category, such that
for every index set n, multimorphisms a and b of arity n, and an n-indexed family f of morphisms
of the base pre-category it holds

b� StarComp(a; f)⇔ a� StarComp(b; f †).

Definition 118. A quasi-invertible category with star-morphisms is a quasi-invertible pre-category
with star-morphisms which is a quasi-invertible pre-category with star-morphisms.

Each category with star-morphisms gives rise to a category (abrupt category, see a remark
below why I call it “abrupt”), as described below. Below for simplicity I assume that the set M

and the set of our indexed families of functions are disjoint. The general case (when they are not
necessarily disjoint) may be easily elaborated by the reader.

• Objects are indexed (by aritym for some m∈M) families of objects of the category C and
an (arbitrarily choosen) object None not in this set

• There are the following disjoint sets of morphisms:

1. indexed (by aritym for some m∈M) families of morphisms of C

2. elements of M

3. the identity morphism idNone on None

• Source and destination of morphisms are defined by the formulas:

◦ Src f =λi∈ dom f : Src fi;

◦ Dst f =λi∈ dom f :Dst fi
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◦ Srcm=None

◦ Dstm=Objm.

• Compositions of morphisms are defined by the formulas:

◦ g ◦ f =λi∈dom f : gi ◦ fi for our indexed families f and g of morphisms;

◦ f ◦m= StarComp(m; f) for m∈M and a composable indexed family f ;

◦ m ◦ idNone=m for m∈M ;

◦ idNone ◦ idNone= idNone.

• Identity morphisms for an object X are:

◦ λi∈X: idXi
if X � None

◦ idNone if X =None

We need to prove it is really a category.

Proof. We need to prove:

1. Composition is associative

2. Composition with identities complies with the identity law.

Really:

1. (h◦ g) ◦ f =λi∈dom f : (hi ◦ gi) ◦ fi=λi∈dom f :hi ◦ (gi ◦ fi)= h◦ (g ◦ f);
g ◦ (f ◦ m) = StarComp(StarComp(m; f); g) = StarComp(m; λi ∈ arity m: gi ◦ fi) =

StarComp(m; g ◦ f)= (g ◦ f) ◦m;
f ◦ (m◦ idNone) = f ◦m=(f ◦m) ◦ idNone.

2. m ◦ idNone=m; idDstm ◦m= StarComp(m;λi∈ aritym: idObjm i)=m. �

Remark 119. I call the above defined category abrupt category because (excluding identity
morphisms) it allows composition with an m ∈M only on the left (not on the right) so that the
morphism m is “abrupt” on the right.

By Jx0;	 ;xn−1K I denote an n-tuple.

Definition 120. Pre-category with star morphisms induced by a dagger pre-category C is:

• The base category is C.

• Star-morphisms are morphisms of C.

• arity f = {0, 1}.

• Objm= JSrcm;DstmK.
• StarComp(m; Jf ; gK)= g ◦m ◦ f †.

Let prove it is really a category with star-morphisms.

Proof. We need to prove the associativity law:

StarComp(StarComp(m; Jf ; gK); Jp; qK)=StarComp(m; Jp ◦ f ; q ◦ gK).
Really,

StarComp(g ◦m◦ f †; Jp; qK)= q ◦ g ◦m◦ f †◦ p†= q ◦ g ◦m◦ (p◦ f)†=StarComp(m; Jp◦ f ; q ◦ gK). �

Definition 121. Category with star morphisms induced by a dagger category C is the above
definined pre-category with star-morphisms.

That it is a category (the law of composition with identity) is trivial.
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Remark 122. We can carry definitions (such as below defined cross-composition product) from
categories with star-morphisms into plain dagger categories. This allows us to research properties
of cross-composition product of indexed families of morphism for categories with star-morphisms
without separately considering the special case of dagger categories and just binary star-composi-
tion product.

10.1 Abrupt of quasi-invertible categories with star-morphisms

Definition 123. The abrupt partially ordered pre-category of a partially ordered pre-category
with star-morphisms is the abrupt pre-category with the following order of morphisms:

• Indexed (by aritym for some m ∈M) families of morphisms of C are ordered as function
spaces of posets.

• Star-morphisms (which are morphisms None→Objm for some m ∈M) are ordered in the
same order as in the pre-category with star-morphisms.

• Morphisms None→None which are only the identity morphism ordered by the unique order
on this one-element set.

We need to prove it is a partially ordered pre-category.

Proof. It trivally follows from the definition of partially ordered pre-category with star-mor-
phisms. �

Theorem 124. When a pre-category with star-morphisms is quasi-invertible, the corresponding
abrupt category is also quasi-invertible.

Proof. We need to prove: g ◦ f � h⇔ g� h◦ f † (or equivalently f †◦ g� h⇔ g� f ◦h) for all kinds
of morphisms.

Consider the cases:

g= idNone.

Subcases:

g=h= idNone. Trivial.

g ∈M . g ◦ f � h⇔ g � h⇔ g� h ◦ f †.

g ∈M .

f † ◦ g� h⇔ StarComp(g; f †)� h⇔ g� StarComp(h; f)⇔ g � f ◦ h.
g is a family of morphism of C.

f † ◦ g� h⇔∃i∈ dom g: fi
† ◦ gi� hi⇔∃i∈dom g: gi� fi ◦ hi⇔ g � f ◦h. �

11 Product of an arbitrary number of funcoids

In this section it will be defined a product of an arbitrary (possibly infinite) family of funcoids.

11.1 Mapping a morphism into a pointfree funcoid

Definition 125. Let’s define the pointfree funcoid χf for every morphism f or a quasi-invertible
category:

〈χf 〉a= f ◦ a and 〈(χf)−1〉b= f † ◦ b.

We need to prove it is really a pointfree funcoid.

Proof. b� 〈χf 〉a⇔ b� f ◦ a⇔ a� f † ◦ b⇔ a� 〈(χf)−1〉b. �
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Remark 126. 〈χf 〉=(f ◦−) is the Hom-functor Hom(f ,−) and we can apply Yoneda lemma to it.

Obvious 127. 〈χ(g ◦ f)〉a = g ◦ f ◦ a for composable morphisms f and g or a quasi-invertible
category.

11.2 General cross-composition

Let fix a quasi-invertible category with with star-morphisms. If f is an indexed family of morphisms

from its base category, then the pointfree funcoid
∏(C)

f from StarHom(λi ∈ dom f : Src fi) to
StarHom(λi ∈ dom f : Dst fi) is defined by the formulas (for all star-morphisms a and b of these
forms):

〈

∏

(C)

f

〉

a= StarComp(a; f) and

〈

(

∏

(C)

f

)

−1〉

b= StarComp(b; f †).

It is really a pointfree funcoid by the definition of quasi-invertible category.
In the terms of abrupt categories, these formulas can be rewritten as:

∏

(C)

f = χf.

Theorem 128.
(

∏(C)
g
)

◦
(

∏(C)
f
)

=
∏

i∈n

(C) (gi ◦ fi) for every n-indexed families f and g of

composable morphisms of a quasi-invertible category with star-morphisms.

Proof.
〈

∏

i∈n

(C) (gi ◦ fi)
〉

a= StarComp(a;λi∈n: gi ◦ fi)= StarComp(StarComp(a; f); g) and
〈(

∏(C)
g
)

◦
(

∏(C)
f
)〉

a=
〈

∏(C)
g
〉〈

∏(C)
f
〉

a= StarComp(StarComp(a; f); g). �

Corollary 129.
(

∏(C)
fk−1

)

◦	 ◦
(

∏(C)
f0

)

=
∏

i∈n

(C)
(fi(k−1)◦	 ◦ fi(k)) for every n-indexed

families f0, 	 , fn−1, g0, 	 , gn−1 composable morphisms of a quasi-invertible category with star-
morphisms.

Proof. By math induction. �

11.3 Some properties of staroids

Lemma 130. Let A0, A1∈ (P℧)n are two families of sets and δ ∈P((P℧)n). Then

δ ∩
∏

i∈n

(A0 i⊔A1 i)� ∅⇔∃c∈{0, 1}n: δ ∩
∏

i∈n

Ac(i) i� ∅.

Proof. f ∈
∏

i∈n
(A0 i⊔A1 i)⇔∀i∈n: (fi∈A0 i∪A1 i)⇔∀i∈n: (fi∈A0 i∨ fi∈A1 i)⇔∃c∈ {0,

1}n∀i∈n: fi∈Ac(i)i⇔∃c∈ {0, 1}n: f ∈
∏

i∈n
Ac(i)i.

f ∈ δ ∩
∏

i∈n
(A0 i ⊔ A1 i) ⇔ f ∈ δ ∧ ∃c ∈ {0, 1}n: f ∈

∏

i∈n
Ac(i)i ⇔ ∃c ∈ {0, 1}n:

f ∈ δ ∩
∏

i∈n
Ac(i)i⇒∃c∈ {0, 1}n: δ ∩

∏

i∈n
Ac(i) i� ∅. The reverse implication is obvious. �

Theorem 131. Let A=Ai∈n is a family of boolean lattices.

A relation δ ∈P
∏

atomsF(Ai) such that for every a∈
∏

atomsF(Ai)

∀A∈ a: δ ∩
∏

i∈n

atoms ↑AiAi� ∅⇒ a∈ δ (5)

can be continued till the function ⇈f for a unique staroid f of the form λi∈n:P(Ai). The funcoid
f is completary.

For every X ∈
∏

i∈n
F(Ai)

X ∈GR⇈f⇔ δ ∩
∏

i∈n

atomsX i� ∅. (6)
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Proof. By the theorem 81 (used that it is a boolean lattice) we have X ∈ GR ⇈f ⇔ GR ⇈

f ∩
∏

i∈n
atomsX i� ∅ and thus (6). From this also follows uniqueness.

It is left to prove that there exists a completary staroid f such that ⇈f is a continuation of δ.

Consider the relation f defined by the formula X ∈ f⇔ δ ∩
∏

i∈n
atoms ↑AiXi� ∅.

I0⊔ I1∈ f⇔ δ ∩
∏

i∈n
atoms ↑Ai(I0 i⊔ I1 i)� ∅⇔ δ ∩

∏

i∈n
(atoms ↑AiI0 i∪ atoms ↑AiI1 i)� ∅.

Thus by the lemma I0 ⊔ I1 ∈ f ⇔ ∃c ∈ {0, 1}n: δ ∩
∏

i∈n
atoms ↑AiIc(i) � ∅ ⇔ ∃c ∈ {0, 1}n:

(λi∈n: Ic(i)i)∈ f . Trivially if ∃i∈n:Xi=0 then X � f . So f is a completary staroid.

Let a∈
∏

atomsF(Ai).
The reverse of (5) is obvious. So we have a∈ δ⇔∀A∈ a: δ ∩

∏

i∈n
atoms ↑AiAi� ∅⇔∀A∈ a:

A∈ f⇔∀A∈ a:A∈ f⇔ a⊆ f⇔ a∈⇈f . Thus ⇈f is a continuation of δ. �

Theorem 132. Let R is a set of staroids of the form λi ∈ n: F(Ai) where every Ai is a boolean
lattice. If x∈

∏

i∈n
atomsF(Ai) then x∈GR⇈

d
R⇔∀f ∈R:x∈⇈f .

Proof. Let denote x ∈ δ ⇔ ∀f ∈ R: x ∈ ⇈f for every x ∈
∏

i∈n
atomsF(Ai). For every a ∈

∏

i∈n
atomsF(Ai)

∀X ∈ a: δ ∩
∏

i∈n
atoms ↑AiXi � ∅ ⇔ ∀X ∈ a∃x ∈

∏

i∈n
atoms ↑AiXi: x ∈ δ ⇔ ∀X ∈ a∃x ∈

∏

i∈n
atoms↑AiXi∀f ∈R:x∈⇈f⇒∀X ∈a, f ∈R∃x∈

∏

i∈n
atoms↑AiXi:x∈⇈f⇒∀X ∈a, f ∈R:

X ∈ f⇔∀f ∈R: a⊆ f⇔∀f ∈R: a∈⇈f⇔ a∈ δ.
So by the previous theorem δ can be contimued till ⇈p for some staroid p of the form λi∈ n:

P(℧i).
Let’s prove p=

d
R.

x∈⇈p⇔x∈δ⇒x∈⇈f for every f ∈R and x∈
∏

i∈n
atomsF(Ai). Thus⇈p⊆⇈f . Consequently

∀f ∈R: p⊆ f .
Suppose that q is a staroid of the form λi∈ n:P(Ai) such that ∀f ∈R: q ⊆ f . Then for every

x∈
∏

i∈n
atomsF(Ai) we have x∈⇈q⇒∀f ∈R:x∈⇈f⇔x∈ δ⇔x∈⇈p. So ⇈q⊆⇈p that is q⊆ p.

We have proved p =
d

R. It’s remained to prove that x ∈ ⇈p ⇔ ∀f ∈ R: x ∈ ⇈f for every

x∈
∏

i∈n
atomsF(Ai). Really, x∈⇈p⇔x∈ δ⇔∀f ∈R:x∈⇈f . �

11.4 Star composition of binary relations

First define star composition for an n-ary relation a and an n-indexed family f of binary relations
as an n-ary relation complying with the formulas:

ObjStarComp(a;f)= {∗}n;

L∈ StarComp(a; f)⇔∃y ∈ a∀i∈n: yi fiLi

where ∗ is a unique object of the semigroup of small binary relations considered as a category.

Proposition 133. b� StarComp(a; f)⇔∃x∈ a, y ∈ b∀j ∈n:xj fj yj.

Proof. We need to prove that b� StarComp(a; f)⇔ a� StarComp(b; f †).
b� StarComp(a; f)⇔∃y∈

∏

A: (y∈ b∧ y∈StarComp(a; f))⇔∃x∈
∏

A: (y∈ b∧∃x∈a∀j ∈n:
xj fjxj)⇔∃x∈

∏

A, x∈ a: (y ∈ b∧∀j ∈n:xj fj yj)⇔∃x∈ a, y ∈ b∀j ∈n:xj fj yj. �

Theorem 134. The semigroup of small binary relations considered as a category together with
the set of of all n-ary relations (for every small n) and the above defined star-composition form a
category with star-morphisms.

Proof. We need to prove:

1. StarComp(StarComp(m; f); g)= StarComp(m;λi∈n: gi ◦ fi);

2. StarComp(m;λi∈ aritym: idObjm i)=m;

3. b� StarComp(a; f)⇔ a� StarComp(b; f †)

(the rest is obvious).

20 Section 11



Really,

1. L∈StarComp(a; f)⇔∃y ∈ a∀i∈n: yi fiLi.
Define the relation R(f) by the formula xR(f) y⇔∀i∈n:xi fi yi. Obviously

R(λi∈n: gi ◦ fi) =R(g) ◦R(f).

L∈StarComp(a; f)⇔∃y ∈ a: yR(f)L.
L ∈ StarComp(StarComp(a; f); g) ⇔ ∃p ∈ StarComp(a; f): pR(g) L ⇔ ∃p, y ∈ a:

(yR(f) p ∧ pR(g) L) ⇔ ∃y ∈ a: y(R(g) ◦ R(f)) L ⇔ ∃y ∈ a: (yR(λi ∈ n: gi ◦ fi) L) ⇔
L∈StarComp(a;λi∈n: gi ◦ fi) because p∈StarComp(a; f)⇔∃y ∈ a: yR(f) p.

2. Obvious.

3. It follows from the proposition above. �

Theorem 135.
〈

∏(C)
f
〉

∏

a=
∏

i∈n
〈fi〉ai for every families f = fi∈n of binary relations and

a= ai∈n where ai is a small set *(for each i∈n).

Proof. L∈
〈

∏(C)
f
〉

∏

a⇔L∈StarComp(
∏

a; f)⇔∃y∈
∏

a∀i∈n: yi fiLi⇔∃y∈
∏

a∀i∈n:

{y} � 〈fi−1〉{Li} ⇔ ∀i ∈ n∃y ∈ ai: {y} � 〈fi−1〉{Li} ⇔ ∀i ∈ n: ai � 〈fi−1〉{Li} ⇔ ∀i ∈ n:
{Li}� 〈fi〉ai⇔∀i∈n:Li∈ 〈fi〉ai⇔L∈

∏

i∈n
〈fi〉ai. �

11.5 Star composition of Rel-morphisms

Define star composition for an n-ary anchored relation a and an n-indexed family f of Rel-
morphisms as an n-ary anchored relation complying with the formulas:

ObjStarComp(a;f)=λi∈ arity a:Dst fi;

arity StarComp(a; f)= arity a;

L∈GRStarComp(a; f)⇔L∈ StarComp(GR a;GR ◦ f).

(Here I denote GR(A;B; f)= f for every Rel-morphism f .)

Proposition 136. b� StarComp(a; f)⇔∃x∈ a, y ∈ b∀j ∈n:xj fj yj.

Proof. From the previous section. �

Theorem 137. Relations with above defined compositions form a quasi-invertible category with
star-morphisms.

Proof. We need to prove:

1. StarComp(StarComp(m; f); g)= StarComp(m;λi∈ aritym: gi ◦ fi);

2. StarComp(m;λi∈ aritym: idObjm i)=m;

3. b� StarComp(a; f)⇔ a� StarComp(b; f †)

(the rest is obvious).
It follows from the previous section. �

Theorem 138. Cross-composition product of a family of Rel-morphisms is a discrete funcoid.

Proof. By the proposition and symmetry
∏(C)

f is a pointfree funcoid. Obviously it is a funcoid
∏

i∈n
Src fi→

∏

i∈n
Dst fi. Its completeness (and dually co-completeness) is obvious. �

11.6 Cross-composition product of funcoids

Let a is a an anchored relation of the form A and domA=n.
Let every fi (for all i∈n) is a pointfree funcoid with Src fi=Ai.
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The star-composition of a with f is an anchored relation of the form λi∈domA:Dst fi defined
by the formula

L∈GRStarComp(a; f)⇔∃y ∈GR a∩
∏

i∈n

atomsAi∀i∈n: yi [fi]Li.

Definition 139. I will call a poset starrish when ⋆a is a free star for every element a of this poset.

Theorem 140.

1. If a is a pre-staroid then StarComp(a; f) is a staroid.

2. If a is a completary staroid and Dst fi is a starrish join-semilattice for every i ∈ n then
StarComp(a; f) is a completary staroid.

Proof.

1. First prove that StarComp(a; f) is a pre-staroid. We need to prove that (val f)jL is a free
star, that is {X ∈ (form f)j | L ∪ {(j;X)} ∈GR f } is a free star, that is the following is a
free star

{X ∈ (form f)j | R(X)}

where R(X)= ∃y ∈
∏

i∈n
atomsAi: (∀i∈n: (i� j⇒ yi [fi]Li)∧ yj [fi]X ∧ y ∈ a).

R= ∃y ∈
∏

i∈n
atomsAi: (∀i∈ n: (i� j⇒ yi [fi]Li)∧ yj [fj]X ∧ yj ∈ (val)j(a|n\{j})) =

∃y ∈
∏

i∈n\{j}
atomsAi, y

′∈ atomsAj: (∀i∈n: yi [fi]Li∧ y ′ [fj]X ∧ y ′∈ (val)j(a|n\{j})) =

∃y ∈
∏

i∈n\{j}
atomsAi∀i∈n: yi [fi]Li∧∃y ′∈ atomsAj: (y

′ [fj]X ∧ y ′∈ (val)j(a|n\{j}))

If ∃y ∈
∏

i∈n\{j}
atoms Ai∀i ∈ n: yi [fi] Li is false our statement is obvious. We can

assume it is true.
So it is enough to prove that

{X ∈ (form f)j | ∃y ′∈ atomsAj: (y
′ [fj]X ∧ y ′∈ (val)j(a|n\{j}))}

is a free star. That is

Q= {X ∈ (form f)j | ∃y ′∈ (atomsAj)∩ (val)j(a|n\{j}): y
′ [fj]X}

is a free star. 0(form f)j � Q is obvious. That Q is an upper set is obvious. It remains to
prove that X0⊔X1∈ Q⇒X0∈ Q∨X1∈ Q for every X0, X1∈ (form f)j. Let X0⊔X1∈Q.
Then there exist y ′ ∈ (atoms Aj) ∩ (val)j(a|n\{j}) such that y ′ [fj]X0 ⊔X1. Consequently
y ′ [fj]X0∨ y ′ [fj]X1. But then X0∈Q∨X1∈Q.

To finish the proof we need to show that GR StarComp(a; f) is an upper set, but this
is obvious.

2. Let a is a completary staroid. Let L0⊔L1∈GRStarComp(a; f) that is ∃y∈
∏

i∈n
atomsAi:

(∀i ∈ n: yi [fi] L0 i ⊔ L1 i ∧ y ∈ a) that is ∃c ∈ {0, 1}n, y ∈
∏

i∈n
atoms Ai: (∀i ∈ n:

yi [fi] Lc(i) i ∧ y ∈ a) (taken into account that Dst fi is starrish) that is ∃c ∈ {0, 1}n:
(λi∈n:Lc(i)i )∈GRStarComp(a; f). So GRStarComp(a; f) is a completary staroid. �

Lemma 141. b�Anch(A) StarComp(a; f)⇔∀A∈ a,B ∈ b, i∈ n:Ai [fi]Bi for anchored relations a
and b.

Proof.

b� StarComp(a; f) ⇔

∃x∈Anch(A): (x⊑ b∧ x⊑ StarComp(a; f)) ⇔

∃x∈Anch(A): (x⊑ b∧∀B ∈ x:B ∈ StarComp(a; f)) ⇔

∃x∈Anch(A):

(

x⊑ b∧∀B ∈ x∃A∈
∏

i∈domA

Ai: (∀i∈n:Ai [fi]Bi∧A∈ a)

)

⇔

∃x∈Anch(A): (x⊑ b∧∀B ∈x,A∈ a, i∈n:Ai [fi]Bi) ⇔

∀B ∈ b, A∈ a, i∈n:Ai [fi]Bi.

�
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Theorem 142. a
[

∏(C)
f
]

b⇔∀A∈ a,B ∈ b, i∈n:Ai [fi]Bi for anchored relations a and b.

Proof. From the lemma. �

Proposition 143. b�pStrd(A) StarComp(a; f)⇔ b�pStrd(B) StarComp(a; f) for staroids a and b.

Proof. Because StarComp(a; f) is a staroid. �

Theorem 144. Anchored relations with above defined compositions form a quasi-invertible cat-
egory with star-morphisms.

Proof. We need to prove:

1. StarComp(StarComp(m; f); g)= StarComp(m;λi∈ aritym: gi ◦ fi);

2. StarComp(m;λi∈ aritym: idObjm i)=m;

3. b� StarComp(a; f)⇔ a� StarComp(b; f †)

(the rest is obvious).
Really,

1. L∈GRStarComp(a; f)⇔∃y ∈GR a∩
∏

i∈n
atomsAi∀i∈n: yi [fi]Li.

Define the relation R(f) by the formula xR(f) y⇔∀i∈n:xi [fi] yi. Obviously

R(λi∈n: gi ◦ fi) =R(g) ◦R(f).

L∈GRStarComp(a; f)⇔∃y ∈GR a∩
∏

i∈n
atomsAi: yR(f)L.

L ∈ GR StarComp(StarComp(a; f); g) ⇔ ∃p ∈ GR StarComp(a; f) ∩
∏

i∈n
atoms Ai:

pR(g)L⇔∃p, y∈GRa∩
∏

i∈n
atomsAi: (yR(f) p∧ pR(g)L)⇔∃y∈GRa∩

∏

i∈n
atomsAi:

y(R(g) ◦ R(f)) L ⇔ ∃y ∈ GR a ∩
∏

i∈n
atoms Ai: yR(λi ∈ n: gi ◦ fi) L ⇔ ∃y ∈

GR a ∩
∏

i∈n
atoms Ai∀i ∈ n: yi [gi ◦ fi] Li⇔ L ∈ GR StarComp(a; λi ∈ n: gi ◦ fi) because

p∈GRStarComp(a; f)⇔∃y ∈GR a∩
∏

i∈n
atomsAi: yR(f) p.

2. Obvious.

3. It follows from the lemma above. �

Theorem 145.
〈

∏(C)
f
〉

∏Strd
a=

∏

i∈n

Strd 〈fi〉ai for every families f = fi∈n of pointfree funcoids

and a= ai∈n where ai∈ Src fi, if Src fi (for every i∈n) is an atomic lattice.

Proof. L ∈
〈

∏(C)
f
〉

∏Strd
a⇔ L ∈ StarComp

(
∏Strd

a; f
)

⇔∃y ∈
∏

i∈domA
atoms Ai∀i ∈ n:

(yi [fi] Li ∧ yi � ai) ⇔ ∀i ∈ n∃y ∈ atoms Ai: (y [fi] Li ∧ y � ai) ⇔ ∀i ∈ n: ai [fi] Li ⇔ ∀i ∈ n:

Li� 〈fi〉ai⇔L∈
∏

i∈n

Strd 〈fi〉ai. �

Theorem 146. For every filters a0, a1, b0, b1 we have

a0×FCD b0
[

f ×(C) g
]

a1×FCD b1⇔ a0×RLD b0
[

f ×(DP) g
]

a1×RLD b1.

Proof. a0×RLD b0
[

f ×(DP) g
]

a1×RLD b1⇔∀A0∈ a0, B0∈ b0, A1∈ a1, B1∈ b1:A0×B0

[

f ×(DP) g
]

A1×B1.
A0×B0

[

f ×(DP) g
]

A1×B1⇔A0×B0

[

f ×(C) g
]

A1×B1⇔A0 [f ]A1∧B0 [g]B1.

Thus it is equivalent to a0 [f ] a1∧ b0 [g] b1 that is a0×FCD b0
[

f ×(C) g
]

a1×FCD b1.
(It was used the theorem 142.) �

Can the above theorem be generalized for the infinitary case?

Proposition 147. GRStarComp(a;λi∈n: fi⊔ gi)=GRStarComp(a; f)⊔pFCDGRStarComp(a; g)
if f , g are pointfree funcoids and every Src fi= Src gi and Dst fi=Dst gi are distributive lattices
with least elements, and a is a multifuncoid of the form λi∈n: Src fi.
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Proof. It follows from the theorem ?? in [3]. �

Conjecture 148. GRStarComp(a⊔pFCD b; f) =GRStarComp(a; f) ⊔pFCDGR StarComp(b; f) if
f is a pointfree funcoid and a, b are multifuncoids of the same form, composable with f .

12 More on cross-composition of funcoids

Lemma 149. Let f is a staroid such that (form f)i is a boolean lattice for each i ∈ arity f . Let

a∈
∏

i∈arity f
F(form f)i.

If ⇈f ⊑
∏Strd

a then ⇈f =StarComp
(

⇈f ;λi∈domA: Iai

FCD(Ai)
)

.

Proof. Let ⇈f ⊑
∏Strd

a. Then L∈GR⇈f⇒L� a.

L ∈ GR StarComp
(

⇈f ; λi ∈ dom A: Iai

FCD(Ai)
)

⇔ ∃y ∈ GR ⇈f ∩
∏

i∈n
atoms Ai∀i ∈ n:

yi

[

Iai

FCD(Ai)
]

Li ⇔ ∃y ∈ GR ⇈f ∩
∏

i∈n
atoms Ai∀i ∈ n: (yi ⊑ Li ∧ yi ⊑ ai) ⇔ ∃y ∈ GR ⇈

f ∩
∏

i∈n
atomsAi∀i∈n: (yi� Li∧ yi� ai)⇔∃y ∈GR⇈f ∩

∏

i∈n
atomsAi∀i∈n: yi� Li because

⇈f ∈GR g⇒ y � a.
If L∈⇈f then there exists y ∈GR⇈f ∩

∏

i∈n
atomsAi such as y⊑L and thus ∀i∈n: yi� Li

(by the theorem 81).

We have L ∈GR StarComp
(

⇈f ; λi ∈ dom A: Iai

FCD(Ai)
)

⇐ L ∈⇈f that is GR StarComp
(

⇈f ;

λi∈ domA: Iai

FCD(Ai)
)

⊒⇈f . The other directoin is obvious. �

Theorem 150. Let f is a staroid such that (form f)i is a boolean lattice for each i∈ arity f . Let

a∈
∏

i∈arity f
F(form f)i. Then

⇈f ⊓FCD(form f)
∏

Strd

a= StarComp
(

⇈f ;λi∈ domA: Iai

FCD(Ai)
)

.

Proof. h=
def

StarComp
(

⇈f ;λi∈ domA: Iai

FCD(Ai)
)

.

Obviously h⊑⇈f and h⊑
∏Strd

a.

Suppose g ⊑⇈f and g ⊑
∏Strd

a.

x∈ g⇔x∈StarComp
(

g;λi∈domA:Iai

FCD(Ai)
)

⇒x∈StarComp
(

f ;λi∈domA:Iai

FCD(Ai)
)

⇔x∈h

(used the proposition above).
So g ⊑ h. �

Corollary 151. Let f is a completary staroid such that (form f)i is a boolean lattice for each

i∈ arity f . Let a∈
∏

i∈arity f
F(form f)i. Then

⇈f ⊓cStrd(form f)
∏

Strd

a= StarComp
(

⇈f ;λi∈domA: Iai

FCD(Ai)
)

.

Proof. Using the theorem 140. �

Theorem 152. Let f is a staroid such that (form f)i is a boolean lattice for each i∈ arity f . Let

a∈
∏

i∈arity f
F(form f)i. Then ⇈f �FCD(form f) ∏Strd

a⇔ a∈⇈f .

Proof. ⇈f �FCD(form f) ∏Strd
a⇔ ⇈f ⊓FCD(form f) ∏Strd

a � 0 ⇔ StarComp
(

⇈f ; λi ∈ arity f :

Iai

FCD(Ai)
)� 0FCD(form f)⇔∃L∈℧n, y ∈GR⇈f ∩

∏

i∈n
atomsAi∀i∈n: yi

[

Iai

FCD(Ai)
]

Li⇔∃L∈℧n,

y ∈ GR ⇈f ∩
∏

i∈n
atoms Ai∀i ∈ n: (yi ⊑ ai ∧ yi ⊑ Li) ⇔ ∃y ∈ GR ⇈f ∩

∏

i∈n
atoms Ai∀i ∈ n:

yi⊑ ai⇔GR⇈f ∩
∏

i∈n
atoms ai� ∅⇔ a∈ f . �

Corollary 153. Let f is a completary staroid such that (form f)i is a boolean lattice for each

i∈ arity f . Let a∈
∏

i∈arity f
F(form f)i. Then ⇈f �cStrd(form f) ∏Strd

a⇔ a∈⇈f .
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Proof. Using the fact that ⇈f ⊓pStrd(form f) ∏Strd
a= StarComp

(

⇈f ; λi∈ domA: Iai

FCD(Ai)
)

is a

completary staroid (theorem 140). �

Theorem 154.
∏Strd

a�pStrd
∏Strd

b⇔
∏Strd

a�cStrd
∏Strd

b⇔ b∈
∏Strd

a⇔a∈
∏Strd

b⇔a� b

for every indexed families a and b of filters on boolean algebras.

Proof. By corollary 66 we have
∏Strd

b=⇈f for some f . Thus as our filtrator is with separable

core we can apply the theorem 152 and its corollary. So
∏Strd

a�cStrd
∏Strd

b⇔ a∈
∏Strd

b and
∏Strd

a�cStrd
∏Strd

b⇔ a∈
∏Strd

b. Similarly
∏Strd

a�cStrd
∏Strd

b⇔ b∈
∏Strd

a. This by the
definition of staroidal product is equivalent to a� b. We are done. �

13 Multireloids

Definition 155. I will call a multireloid of the form A=Ai∈n, where every each Ai is a set, a pair
(f ;A) where f is a filter on the set

∏

A.

Definition 156. I will denote Obj(f ;A)=A and GR(f ;A)= f for every multireloid (f ;A).

I will denote RLD(A) the set of multireloids of the form A.

The multireloid ↑RLD(A)F for a binary relation F is defined by the formulas:

Obj ↑RLD(A)F =A and GR ↑RLD(A)F = ↑
∏

AGRF .

Let a is a multireloid of the form A and domA=n.
Let every fi is a reloid with Src fi=Ai.
The star-composition of a with f is a multireloid of the form λi∈domA: Src fi defined by the

formulas:

arity StarComp(a; f) =n;

GRStarComp(a; f)=
l {

↑RLD(A)StarComp(A;F ) | ∀A∈ a, F ∈
∏

i∈n

fi

}

;

Objm StarComp(a; f)=λi∈n:Dst fi.

Theorem 157. Multireloids with above defined compositions form a quasi-invertible category
with star-morphisms.

Proof. We need to prove:

1. StarComp(StarComp(m; f); g)= StarComp(m;λi∈ aritym: gi ◦ fi);

2. StarComp(m;λi∈ aritym: idObjm i)=m;

3. b� StarComp(a; f)⇔ a� StarComp(b; f †)

(the rest is obvious).
Really,

1. StarComp(StarComp(A; f); g) =
d {

↑RLD(A)StarComp(B; G) | ∀B ∈ StarComp(A; f),

G ∈
∏

i∈n
gi
}

=
d {

↑RLD(A)StarComp(StarComp(A; F ); G) | ∀A ∈ a, F ∈
∏

i∈n
fi,

G ∈
∏

i∈n
gi
}

=
d {

↑RLD(A)StarComp(A;G ◦ F ) | ∀A ∈ a, F ∈
∏

i∈n
fi, G ∈

∏

i∈n
gi
}

=
d {

↑RLD(A)StarComp(A;H) | ∀A∈a,H ∈
∏

i∈n
λi∈n: gi◦ fi

}

=StarComp(a;λi∈n: gi◦ fi)

(used properties of generalized filter bases) [TODO: More detailed proof.]

2. StarComp(m; λi ∈ arity m: idObjm i) =
d {

↑RLD(A)StarComp(A; idX) | ∀A ∈ m, X ∈
⋃

i∈n
PObjm i

}

=
d {

↑RLD(A)A | ∀A∈ a
}

=m.

3. Using properties of generalized filter bases,
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b� StarComp(a; f)⇔∀A∈a,B∈B,F ∈
∏

i∈n
fi:B� StarComp(A;F )⇔∀A∈a,B∈B,

F ∈
∏

i∈n
fi:B � 〈 ∏(C)

F
〉

A⇔∀A ∈ a, B ∈B, F ∈
∏

i∈n
fi:A � 〈( ∏(C)

F
)

−1
〉

B⇔

∀A∈ a,B ∈B,F ∈
∏

i∈n
fi:A� StarComp(B;F †)⇔ a� StarComp(b; f †). �

Definition 158. Let f is a multireloid of the form A. Then for i∈domA

Pri
RLD f =

l
〈↑Ai〉〈Pri 〉f.

Definition 159.
∏RLD X =

d {

↑RLD(λi∈domX :Base(X i))
∏

X | X ∈X
}

for every indexed family
X of filters on powersets.

Proposition 160. Prk
RLD

∏RLD
x= xk for every indexed family x of proper filters.

Proof. It follows from 〈Prk 〉
{

↑RLD(λi∈domX :Base(X i))
∏

X | X ∈ x
}

=
d

{X | X ∈x}=x. �

Conjecture 161. GRStarComp(a;λi∈n: fi⊔ gi)=GRStarComp(a; f)⊔GRStarComp(a; g) for
a multireloid a and indexed families f and g of multireloids where Src fi=Src gi and Dst fi=Dst gi.

Conjecture 162. GR StarComp(a ⊔ b; f) = GR StarComp(a; f) ⊔ GR StarComp(b; f) if f is a
reloid and a, b are multireloids of the same form, composable with f .

Theorem 163.
∏RLD

A=
⊔
{
∏RLD

a | a∈
∏

i∈domA
atomsAi

}

for every indexed family A of
filters on powersets.

Proof. Obviously
∏RLD

A⊒
⊔
{
∏RLD

a | a∈
∏

i∈domA
atomsAi

}

.

Reversely, let K ∈
⊔
{
∏RLD

a | a∈
∏

i∈domA
atomsAi

}

. Then for every i∈ domA we have

K ∈
∏RLD

ai for every ai∈
∏

j∈domA
atomsAj and so K ⊒

∏

Xi for some Xi ∈
∏

j∈domA
Aj.

Consequently K ⊒
⊔

i∈domA

∏

Xi =
⊔

i∈domA

∏

j∈domA
Xi,j =

∏

j∈domA

⊔

i∈domA
Xi,j ⊒

∏

j∈domA
Zj for some Zj ∈Aj. So K ∈

∏RLD
A. �

Theorem 164. Let a, b be indexed families of filters on powersets of the same form A. Then

∏

RLD

a⊓
∏

RLD

b=
∏

i∈domA

RLD

(ai⊓ bi).

Proof.

∏

RLD

a⊓
∏

RLD

b =
{

↑RLD(A)(P ∩Q) | P ∈
∏

RLD

a, Q∈
∏

RLD

b

}

=

{

↑RLD(A)
(
∏

p∩
∏

q
)

| p∈
∏

a, q ∈
∏

b
}

=






↑RLD(A)

(

∏

i∈domA

(pi∩ qi)

)

| p∈
∏

a, q ∈
∏

b







=

{

↑RLD(A)
∏

r | r ∈
∏

i∈domA

(ai⊓ bi)

}

=

∏

i∈domA

RLD

(ai⊓ bi).

�

Theorem 165. If S ∈P
∏

i∈domA
F(Ai) where A is an indexed family of sets, then

l
{

∏

RLD

a | a∈S

}

=
∏

i∈domA

RLD l
〈

↑F(Ai)
〉

PriS.
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Proof. Special case when S is empty is obvious. Let S � ∅.d 〈

↑F(Ai)
〉

PriS ⊑
d 〈

↑F(Ai)
〉

{ai}= ai for every a∈S because ai∈PriS. Thus
∏

i∈domA

RLD d 〈

↑F(Ai)
〉

PriS ⊑
∏RLD

a;

l
{

∏

RLD

a | a∈S

}

⊒
∏

i∈domA

RLD l
〈

↑F(Ai)
〉

PriS.

Now suppose F ∈
∏

i∈domA

RLD d 〈

↑F(Ai)
〉

PriS. Then there exist X ∈
(

λi∈domA:
d 〈

↑F(Ai)
〉

PriS
)

such that F ⊇
∏

X . It is enough to prove that there exist a∈S such that F ∈
∏RLD

a. For this

it is enough
∏

X ∈
∏RLD

a.

Really, Xi∈
d 〈

↑F(Ai)
〉

PriS thus Xi∈ ai for every a∈S because PriS ⊇{ai}.

Thus
∏

X ∈
∏RLD

a. �

Definition 166. I call a multireloid convex iff it is a join of reloidal products.

Conjecture 167. f ⊑
∏RLD

a ⇔ ∀i ∈ arity f : Pri
RLD f ⊑ ai for every multireloid f and

ai∈F((form f)i) for every i∈ arity f .

14 Subatomic product of funcoids

Lemma 168.
d

〈↑A〉〈Pri 〉a= 〈Pri 〉a for every multireloid a and i∈ arity a.

Proof.
d

↑A〈Pri 〉a⊇〈Pri 〉a is obvious.
〈Pri 〉a is a filter base. Really, let P , Q ∈ 〈Pri 〉a. Then P = domX0, Q = domX1 where X0,

X1∈ a. Then P ∩Q=domX0∩domX1⊇dom(X0∩X1)∈ 〈Pri 〉a.
Let K ∈

d
〈↑A〉〈Pri 〉a. Then by properties of generalized filter bases there exists X ∈ a such

that K ⊇〈↑A〉〈Pri 〉X that is K ∈PriX and consequently K ∈ 〈Pri 〉a. �

Definition 169. Let f is an indexed family of funcoids. Then
∏(A)

f (subatomic product) is

a funcoid
∏

i∈dom f
Src fi→

∏

i∈dom f
Dst fi such that for every a ∈ atoms 1RLD(λi∈dom f :Src fi),

b∈ atoms 1RLD(λi∈dom f :Dst fi)

a

[

∏

(A)

f

]

b⇔∀i∈ dom f :Pri a [fi]Pri b.

Proposition 170. The funcoid
∏(A)

f exists.

Proof. To prove that
∏(A)

f exists we need to prove (for every a ∈ atoms 1RLD(λi∈dom f :Src fi),

b∈ atoms 1RLD(λi∈dom f :Dst fi))

∀X ∈ a, Y ∈ b∃x ∈ atoms ↑RLD(λi∈dom f :Src fi)X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi)Y : x

[

∏

(A)

f

]

y ⇒

a

[

∏

(A)

f

]

b.

Let ∀X ∈ a, Y ∈ b∃x∈ atoms ↑RLD(λi∈dom f :Src fi)X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi)Y :x
[

∏(A)
f
]

y.

Then

∀X ∈ a, Y ∈ b∃x ∈ atoms ↑RLD(λi∈dom f :Src fi)X, y ∈ atoms ↑RLD(λi∈dom f :Dst fi)Y ∀i ∈ dom f :

Pri x [fi]Pri y.

Then because Pri x∈ atoms ↑Src fiPriX and likewise for y:
Then ∀X ∈ a, Y ∈ b∀i∈ dom f∃x∈ atoms ↑Src fiPriX, y ∈ atoms ↑Dst fiPri Y :x [fi] y.
Thus ∀X ∈ a, Y ∈ b∀i∈dom f : ↑Src fiPriX [fi] ↑Dst fiPri Y ;
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∀X ∈ a, Y ∈ b∀i∈dom f :PriX [fi]
∗Pri Y .

Then ∀X ∈ 〈Pri 〉a, Y ∈ 〈Pri 〉b:X [fi]
∗Y .

Thus by the lemma ∀X ∈
d

〈↑Src fi〉〈Pri 〉a, Y ∈
d

〈↑Dst fi〉〈Pri 〉b:X [fi]
∗Y .

∀X ∈Pri a, Y ∈Pri b:X [fi]
∗Y .

Thus Pri a [fi]Pri b. So ∀i∈dom f :Pri a [fi]Pri b and thus a
[

f ×(A) g
]

b. �

Remark 171. It seems that the proof of the above theorem can be simplified using cross-compo-
sition product.

Theorem 172.
∏

i∈n

(A) (gi ◦ fi)=
∏(A)

g ◦
∏(A)

f for indexed (by an index set n) families f and

g of funcoids such that ∀i∈n:Dst fi= Src gi.

Proof. Let a, b are ultrafilters on
∏

i∈n
Src f i and

∏

i∈n
Dst gi correspondingly,

a

[

∏

i∈n

(A)

(gi ◦ fi)

]

b ⇔ ∀i ∈ dom f : Pri a [gi ◦ fi] Pri b ⇔ ∀i ∈ dom f∃C ∈ atomsF
∏

i∈n
Dst fi

:

(Pri a [fi]C ∧C [gi]Pri b)⇔∀i∈ dom f∃c∈ atomsRLD(λi∈n:Dst f): (Pri a [fi]Pri c∧Pri c [gi]Pri b)⇐

∃c ∈ atomsRLD(λi∈n:Dst f)∀i ∈ dom f : (Pri a [fi] Pri c ∧ Pri c [gi] Pri b)⇔ ∃c ∈ atomsRLD(λi∈n:Dst f):


a

[

∏

(A)

f

]

c∧ c

[

∏

(A)

g

]

b



⇔ a

[

∏

(A)

g ◦
∏

(A)

f

]

b.

Let

∀i∈ dom f∃c∈ atomsRLD(λi∈n:Dst f): (Pri a [fi]Pri c∧Pri c [gi]Pri b).

Then there exists c′∈ atomsRLD(λi∈n:Dst f) such that

∀i∈ dom f : (Pri a [fi]Pri ci
′∧Pri ci

′ [gi]Pri b).

Then take c′′=
∏RLD

c′. Then ∀i∈ dom f : (Pri a [fi]Pri ci
′′∧Pri ci

′′ [gi]Pri b). Thus

∃c∈ atomsRLD(λi∈n:Dst f)∀i∈ dom f : (Pri a [fi]Pri c∧Pri c [gi]Pri b).

We have a
[

∏

i∈n

(A) (gi ◦ fi)
]

b⇔ a
[

∏(A)
g ◦
∏(A)

f
]

b. �

Proposition 173.
∏RLD

a
[

∏(A)
f
]

∏RLD
b⇔∀i ∈ dom f : ai [fi] bi for an indexed family f of

funcoids and indexed families a abd b of filters where ai∈F(Src f), bi∈F(Dst f) for every i∈dom f .

Proof.
∏RLD

a
[

∏(A)
f
]

∏RLD
b⇔∃x ∈ atoms

∏RLD
a, y ∈ atoms

∏RLD
b: x

[

∏(A)
f
]

y⇔

∃x ∈ atoms
∏RLD

a, y ∈ atoms
∏RLD

b∀i ∈ dom f : Pri x [fi] Pri y ⇔ ∃x ∈ atoms
∏RLD

a,

y ∈ atoms
∏RLD

b∀i∈ dom f : ai [fi] bi⇔∀i∈ dom f : ai [fi] bi. �

15 On products and projections

Conjecture 174. For discrete funcoids
∏(C) and

∏(A) coincide with the conventional product
of binary relations.

15.1 Staroidal product

Let f is a staroid components of whose form are boolean lattices.

Definition 175. Staroidal projection of a staroid

Prk
Strd f = 〈f 〉k

(

λi∈ (arity f) \ {k}: 1(form f)i
)

.
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Proposition 176. Prk GR
∏Strd

x= ⋆xk.

Proof. Prk GR
∏Strd

x=Prk {L∈℧dom x | ∀i∈domx:xi� Li}=??= {l | xk� l}= ⋆xk. �

Proposition 177. Prk
Strd

∏Strd
x=xk if x is an indexed family of proper filters, and k ∈dom x.

Proof. Prk
Strd

∏Strd
x=

〈
∏Strd

x
〉

k

(

λi∈ (domx) \ {k}: 1(form x)i
)

.

Thus ∂ Prk
Strd

∏Strd
x =

(

val
∏Strd

x
)

k

(

λ i ∈ (dom x) \ {k}: 1(form x)i
)

=
{

X ∈
(

form
∏Strd

x
)

k
|
(

λi∈ (domx) \ {k}: 1(formx)i
)

∪{(k;X)}∈GR
∏Strd

x
}

=
{

X ∈Basexk |
(

∀i∈

(domx) \ {k}: 1(form x)i� xi

)

∧X � xk

}

= {X ∈Basexk | X � xk}= ∂ xk.

Consequently Prk
Strd

∏Strd
x= xk. �

15.2 Cross-composition product of pointfree funcoids

Zero morphisms of the category of pointfree funcoids are ??.

Proposition 178. Values xi (for every i ∈ dom x) can be restored from the value of
∏(C)

x

provided that x is an indexed family of non-zero pointfree funcoids if Src fi (for every i∈n) is an
atomic lattice and every Dst fi has greatest element.

Proof.
〈

∏(C)
x
〉

∏Strd
p=

∏

i∈n

FCD 〈xi〉pi by the theorem 145.

Since xi � 0 there exist p such that 〈xi〉pi � 0. Take k ∈ n, pi
′ = pi for i � k and pk

′ = q for an
arbitrary value q; then (using the staroidal projections from the previous subsection)

〈xk〉q=Prk
Strd

∏

i∈n

FCD

〈xi〉pi
′=Prk

Strd

〈

∏

(C)

x

〉

∏

Strd

p′.

So the value of x can be restored from
∏(C)

x by this formula. �

15.3 Subatomic product

Proposition 179. Values xi (for every i ∈ dom x) can be restored from the value of
∏(A)

x

provided that x is an indexed family of non-zero funcoids.

Proof. Fix k ∈dom f . Let for some filters x and y

a=

{

1F(Base(x)) if i� k;
x if i= k

and b=

{

1F(Base(y)) if i� k;
y if i= k.

Then ak [xk] bk⇔∀i∈ dom f : ai [xi] bi⇔
∏RLD

a
[

∏(A)
x
]

∏RLD
b. So we have restored xk from

∏(A)
x. �

Conjecture 180. For every funcoid f :
∏

A→
∏

B (where A and B are indexed families of sets)

there exists a funcoid Prk
(A)

f defined by the formula

x
[

Prk
(A)

f
]

y⇔
∏

RLD
({

1F(Base(x)) if i� k;
x if i= k

)

[f ]
∏

RLD
({

1F(Base(y)) if i� k;
y if i= k.

)

for:

1. every filters x and y;

2. every principal filters x and y;

3. every atomic filters x and y.
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15.4 Other

Conjecture 181. Values xi (for every i∈domx) can be restored from the value of
∏(C)

x provided
that x is an indexed family of non-zero reloids.

Conjecture 182. Values xi (for every i ∈ dom x) can be restored from the value of
∏(DP)

x

provided that x is an indexed family of non-zero funcoids.

Definition 183. Let f ∈P
(

Z
∐

Y
)

where Z is a set and Y is a function.

Prk
(D)

f =Prk {curry z | z ∈ f }.

Proposition 184. Prk
(D) ∏(D)

F =Fk for every indexed family F of non-empty relations.

Proof. Obvious. �

Corollary 185. GRPrk
(D) ∏(D)

F =GRFk and formPrk
(D) ∏(D)

F = formFk for every indexed
family F of non-empty anchored relations.

16 Coordinate-wise continuity

Theorem 186. Let µ and ν are indexed (by some index set n) families of endo-morphisms for a
partially ordered dagger category with star-morphisms, and fi∈Hom(Ob µi;Obνi) for every i∈n.
Then:

1. ∀i∈n: fi∈C(µi; νi)⇒
∏(C)

f ∈C
(

∏(C)
µ;
∏(C)

ν
)

;

2. ∀i∈n: fi∈C′(µi; νi)⇒
∏(C)

f ∈C′
(

∏(C)
µ;
∏(C)

ν
)

;

3. ∀i∈n: fi∈C′′(µi; νi)⇒
∏(C)

f ∈C′′
(

∏(C)
µ;
∏(C)

ν
)

.

Proof. Using the corollary 129:

1. ∀i ∈ n: fi ∈ C(µi; νi) ⇔ ∀i ∈ n: fi ◦ µi ⊑ νi ◦ fi ⇒
∏

i∈n

(C) (fi ◦ µi) ⊑
∏

i∈n

(C) (νi ◦ fi) ⇔
(

∏(C)
f
)

◦
(

∏(C)
µ
)

⊑
(

∏(C)
ν
)

◦
(

∏(C)
f
)

⇔
∏(C)

f ∈C
(

∏(C)
µ;
∏(C)

ν
)

.

2. ∀i∈n: fi∈C′(µi; νi)⇔∀i∈n: µi⊑ fi
† ◦ νi ◦ fi⇒

∏(C)
µ⊑

∏

i∈n

(C) (
fi
† ◦ νi ◦ fi

)

⇔
∏(C)

µ⊑
(

∏

i∈n

(C)
fi
†
)

◦
(

∏

i∈n

(C)
νi

)

◦
(

∏

i∈n

(C)
fi

)

⇔
∏(C)

µ⊑
(

∏

i∈n

(C)
fi

)

†
◦
(

∏

i∈n

(C)
νi

)

◦
(

∏

i∈n

(C)
fi

)

⇔
∏(C)

f ∈C′
(

∏(C)
µ;
∏(C)

ν
)

.

3. ∀i ∈ n: fi ∈ C′′(µi; νi) ⇔ ∀i ∈ n: fi ◦ µi ◦ fi
† ⊑ νi ⇒

∏

i∈n

(C) (
fi ◦ µi ◦ fi

†) ⊑
∏

i∈n

(C)
νi ⇔

∏

i∈n

(C)
fi◦

∏

i∈n

(C)
µi◦

∏

i∈n

(C)
fi
†⊑

∏

i∈n

(C)
νi⇔

∏

i∈n

(C)
fi◦

∏

i∈n

(C)
µi◦

(

∏

i∈n

(C)
fi

)

†
⊑
∏

i∈n

(C)
νi⇔

∏

i∈n

(C)
fi∈C′′

(

∏(C)
µ;
∏(C)

ν
)

. �

Theorem 187. Let µ and ν are indexed (by some index set n) families of endo-funcoids, and
fi∈ FCD(Ob µi;Ob νi) for every i∈n. Then:

1. ∀i∈n: fi∈C(µi; νi)⇒
∏(A)

f ∈C
(

∏(A)
µ;
∏(A)

ν
)

;

2. ∀i∈n: fi∈C′(µi; νi)⇒
∏(A)

f ∈C′
(

∏(A)
µ;
∏(A)

ν
)

;

3. ∀i∈n: fi∈C′′(µi; νi)⇒
∏(A)

f ∈C′′
(

∏(A)
µ;
∏(A)

ν
)

.

Proof. Similar to the previous theorem. �
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17 Counter-examples

Example 188. ⇈�f � f for some staroid f whose form is a family of filters on a set.

Proof. Let GR f ={A∈F(℧) | ↑℧CorA�∆} for some infinite set ℧ where∆ is some non-principal
f.o. on ℧.

A⊔B ∈GR f⇔↑℧Cor(A⊔B)� ∆⇔↑℧CorA⊔↑℧CorB � ∆⇔ (CorA⊔CorB)⊓∆� 0F(℧)⇔

↑℧CorA∩∆� 0F(℧)∨↑Base(B)CorB ∩∆� 0F(℧)⇔A∈ f ∨B ∈ f .

Obviously 0F(℧)� GR f . So f is a free star. But free stars ere essentially the same as 1-staroids.
GR�f = ∂∆. GR⇈�f = ⋆∆� f . �

For the below counter-examples we will define a staroid ϑ with arityϑ=N and GRϑ∈P(NN)
(based on a suggestion by Andreas Blass):

A∈GRϑ⇔ sup
i∈N

card(Ai∩ i) =N∧∀i∈N:Ai� ∅.

Proposition 189. ϑ is a staroid.

Proof. (val ϑ)iL=PN \ {∅} for every L∈ (PN)N\{i} if ∀i ∈N:Li� ∅. Otherwise (val ϑ)iL= ∅.
Thus (valϑ)iL is a free star. So ϑ is a staroid. �

Proposition 190. ϑ is a completary staroid.

Proof. A0 ⊔ A1 ∈ GR ϑ ⇔ A0 ∪ A1 ∈ GR ϑ ⇔ supi∈N card((A0i ∪ A1i) ∩ i) = N ∧ ∀i ∈ N:
A0i∪A1i� ∅⇔ supi∈N card((A0i∩ i)∪ (A1i∩ i))=N∧∀i∈N:A0i∪A1i� ∅.

If A0i= ∅ then A0i∩ i= ∅ and thus A1i∩ i⊒A0i∩ i. Thus we can select c(i)= 1 in such a way
that ∀d ∈ {0, 1}: card(Ac(i) ∩ i)⊒ card(Ad ∩ i) and Ac(i)i� ∅. (Consider the case A0i, A1i � ∅ and

the similar cases A0i= ∅ and A1i= ∅.)
So A0⊔A1∈ f⇔ supi∈N card(Ac(i)i∩ i) =N∧Ac(i)i� ∅⇔ (λi∈n:Ac(i)i)∈ϑ.
Thus ϑ is completary. �

Obvious 191. ϑ is non-zero.

Example 192. For every family a= ai∈N of atomic f.o.
∏

a is not an atom nor of the poset of
staroids neither of the poset of completary staroids of the form λi∈N:Base(ai).

Proof. It’s enough to prove ϑ +
∏

a.
Let ↑NRi= ai is ai is principal and Ri=N \ i if ai is non-principal.
We have ∀i∈N:Ri∈ ai.
We have R � ϑ because supi∈N card(Ri∩ i)= 0.
R∈

∏

a because ∀X ∈ ai:X ∩Ri� ∅.
So ϑ +

∏

a. �

Remark 193. At http://mathoverflow.net/questions/60925/special-infinitary-relations-and-
ultrafilters there are a proof for arbitary infinite form, not just for N.

Conjecture 194. There exists a non-completary staroid.

Conjecture 195. There exists a pre-staroid which is not a staroid.

Conjecture 196. The set of staroids of the form AB where A and B are sets is atomic.

Conjecture 197. The set of staroids of the form AB where A and B are sets is atomistic.

Conjecture 198. The set of completary staroids of the form AB where A and B are sets is atomic.

Conjecture 199. The set of completary staroids of the form AB where A and B are sets is
atomistic.
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18 Conjectures

Remark 200. Below I present special cases of possible theorems. The theorems may be generalized
after the below special cases are proved.

Conjecture 201. For every two a. funcoids; b. of reloids f and g we have:

1. (RLD)ina
[

f ×(DP) g
]

(RLD)inb ⇔ a
[

f ×(C) g
]

b for every funcoids a ∈ FCD(Src f ; Src g),

b∈FCD(Dst f ;Dst g);

2. (RLD)outa
[

f ×(DP) g
]

(RLD)outb⇔ a
[

f ×(C) g
]

b for every funcoids a ∈ FCD(Src f ; Src g),

b∈FCD(Dst f ;Dst g);

3. (FCD)a
[

f ×(C) g
]

(FCD)b ⇔ a
[

f ×(DP) g
]

b for every reloids a ∈ RLD(Src f ; Src g),

b∈RLD(Dst f ;Dst g).

Definition 202. A staroid on power sets is such a staroid f that every (form f)i is a lattice of all
subsets of some set.

Conjecture 203.
∏Strd

a� ∏Strd
b⇔ b∈

∏Strd
a⇔a∈

∏Strd
b⇔a� b for every indexed families

a and b of filters on powersets of some sets.

Conjecture 204. Let f is a staroid on powersets and a∈
∏

i∈arity f
Src fi, b∈

∏

i∈arity f
Dst fi.

Then

∏

Strd

a

[

∏

(C)

f

]

∏

Strd

b⇔∀i∈n: ai [fi] bi.

Proposition 205. The conjecture 203 is a consequence of the conjecture 177.

Proof. Applying the definition of staroidal product and the theorem 177 we get:

∏

Strd

a� ∏

Strd

b⇔ (theorem 177)⇔b∈
∏

Strd

a⇔ a� b.

Similarly
∏Strd

a� ∏Strd
b⇔ a∈

∏Strd
b. �

Proposition 206. The conjecture 204 is a consequence of the conjecture 203.

Proof.
∏Strd

a
[

∏(C)
f
]

∏Strd
b⇔

∏Strd
b� 〈 ∏(C)

f
〉

∏Strd
a⇔

∏Strd
b� ∏

i∈n

Strd 〈fi〉ai⇔

∀i∈n: bi� 〈fi〉ai⇔∀i∈n: ai [fi] bi. �

Conjecture 207. For every indexed families a and b of filters and an indexed family f of pointfree
funcoids we have

∏

Strd

a

[

∏

(C)

f

]

∏

Strd

b⇔
∏

RLD

a

[

∏

(DP)

f

]

∏

RLD

b.

Conjecture 208. Displaced product of funcoids is a quasi-cartesian functions. (Consider also a
similar conjecture for reloids.)

Strenghtening of an above result:

Conjecture 209. If a is a completary staroid and Dst fi is a starrish poset for every i ∈ n then
StarComp(a; f) is a completary staroid.

Strenghtenings of above results:

Conjecture 210.

1.
∏(D)

F is a pre-staroid if every Fi is a pre-staroid.
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2.
∏(D)

F is a completary staroid if every Fi is a completary staroid.

Conjecture 211. If f1 and f2 are funcoids, then there exists a pointfree funcoid f1× f2 such that

〈f1× f2〉x=
⊔

{〈f1〉X ×FCD 〈f2〉X | X ∈ atoms x}

for every ultrafilter x.

18.1 Informal questions

Are the above defined products categorical direct products for some category?
Do products of funcoids and reloids coincide with Tychonov topology?
Limit and generalized limit for multiple arguments.
Is product of connected spaces connected?
Product of T0-separable is T0, of T1 is T1?
Relationships between multireloids and staroids.
Generalize the section “Specifying funcoids by functions or relations on atomic filter objects”

from [3].
Generalize “Relationships between funcoids and reloids” in [1].
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