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Abstract

First I define a product of two funcoids. Then I define multifuncoids and staroids as gen-
eralizations of funcoids. Using staroids I define a product of an arbitrary (possibly infinite)
family of funcoids and some other products.

1 Draft status

It is a rough draft.
This article is outdated. Read the book instead.

2 Notation

This article presents a generalization of concepts from [I] and [3].

In this article I will use 3 to denote order in a poset and M, LI to denote meets and joins on a
semilattice. I reserve O, N, and U for set-theoretic supset-relation, intersection, and union.

For a poset 2 I will denote Least(2() the set of least elements of 2. (This set always has either
one or zero elements.)

With this notation we do not need the concept of filter objects ([4]), we will use the standard
set of filters, but the order C on the lattice of filters will be opposite the set theoretic inclusion C
of filters.

3 Product of two funcoids

3.1 Lemmas

Lemma 1. Let A, B, C are sets, f € FCD(A; B), g€ FCD(B;C), h € FCD(A;C). Then
gof¥hs gkhofL

Proof. See [1]. O

Lemma 2. Let A, B, C are sets, f €RLD(A; B), g € RLD(B;C), h€ RLD(A; C). Then
gof#he gkhoft.

Proof. See [I]. O

Lemma 3. fo(AxFPB)=Ax P (f)B for elements A €A and B € B of some posets A, B with
least elements and f € FCD(; B).

Proof. (fo(AxFCDB)>X:({ nB ifX*A)=<AxFCD<f>B>X. O

(
0 if ¥ <A
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3.2 Definition

Definition 4. I will call a quasi-invertible category a partially ordered dagger category such that
it holds

go f#he gkhofl (1)
for every morphisms f € Hom(A; B), g € Hom(B; C), h € Hom(A; C), where A, B, C are objects
of this category.

Inverting this formula, we get ffo gf £ hf < gf % fohl. After replacement of variables, this

gives: flogthe gk foh

As it follows from [T], the category of funcoids and the category of reloids are quasi-invertible
(taking fT= f~1). Moreover by [3] the category of pointfree funcoids between lattices of filters on
boolean lattices are quasi-invertible.

Definition 5. The cross-composition product of morphisms f and g of a quasi-invertible category
is the pointfree funcoid Hom(Src f;Src g) — Hom(Dst f; Dst g) defined by the formulas (for every
a € Hom(Src f; Src g) and b € Hom(Dst f; Dst g)):

<f><(c)g>a:goaofT and <(f><(c)g)_1>b:9TObof-

The cross-composition product is a pointfree funcoid from Hom(Src f; Src g) to Hom(Dst f;Dst g).
We need to prove that it is really a pointfree funcoid that is that

bt (f x(c)g>a©ai ((f x(c)g)71>b.

This formula means b goao ff< a% gtobo f and can be easily proved applying the formula (1)
two times.

Proposition 6. a| f x (©) glbeao fikglob.

Proof. From the lemma. O
Proposition 7. a[f x () g] bs f [a x(c)b} g.

Proof. f[ax(@b]ge foal(blogeao fitglobealfx(@glb. O
Theorem 8. (f x (©) g)1L = fTx(©) gt

Proof. For every funcoids a € Hom(Src f; Src g) and b € Hom(Dst f; Dst g) we have:
((fxDg))b=gtobo f=globo f=(f1x( g
<((f X(C)g)T)T>a: <f X(C)g>a:goao fT: <(fT « (C) gT)T>a. N

Theorem 9. Let f, g are morphisms of a quasi-invertible category where Dst f and Dst g are f.o.
on boolean lattices. Then for every f.o. Ay € F(Src f), Bo € F(Src g)

(f x'D g) (Ao xFP By) = () Ao xFP (g) Bo.

Proof. For every atom a; X FCDp, (a1 € atomsP®t /| by € atomsPst 9) of the lattice of funcoids we have:

a1 xFP by £ (f XD g)(Ag xFPL By) & Ag xFL By [ f x (D gl ag xFL by & (Ag xFPL By) o fT3£
g'o (a1 xFLb1) & (f)Ag xFP By £ a1 xFP (gT)b1 & (f)Ao £ a1 A (gh)bi £ Bo < (f) Ao # a1 A
(9)Bo# br & (f)Ao xFP () By # a1 xFP by, Thus ( f x(@) g)(Ag x"P Bo) = (f).Ag xFP (g)By
because the lattice FCD(F(Dst f); §(Dst g)) is atomically separable (corollary 64 in [3]). O

Proposition 10. Agx P By [ f x(D g] A1 xFP By & Ao [ f] A1 A By [g] By for every Ag € F(Sre f),
A1 €F(Dst f), Bo€ §(Srcg), Bi€F(Dst g).

Proof. AO XFCD BO [f X(C)g} A1 XFCD Bl <~ Al XFCD Bl 5{ <f X(C) g>(A0 XFCD Bo) <~
.Al XFCDBli<f>.A0 XFCD <g>60<:>¢417&<f>.Ao/\Bl%<g>Bo<:>Ao [f] Al/\Bo [g] Bl. O
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4 Function spaces of posets

Definition 11. Let 2; is a family of posets indexed by some set dom 2. We will define order of
families of posets by the formula

aCbeViedomA: a; Cb;.

I will call this new poset A= [] 2 the function space of posets and the above order product order.
Proposition 12. The function space for posets is also a poset.

Proof.
Reflexivity. Obvious.
Antisymmetry. Obvious.

Transitivity. Obvious. 0

Obvious 13. 2 has least element iff each 2; has a least element. In this case

Least(2l) = H Least(2L;).
i€dom 2A

Proposition 14. a#b< 3i e domA: a; %4 b; for every a,be [T A.

Proof. a #be 3ce [[A(cCaAcCb) <Jece [[AViedom A (¢; Ca; A Cby) <
ViedomA3z e [[ A:(x Ca; Az Cb;) < ViedomA: a; £ b;. O
Proposition 15.
1. If A; are join-semilattices then 2l is a join-semilattice and
AUB=Xiedom2: Aill Bi. (2)
2. If 2, are meet-semilattices then 2( is a meet-semilattice and

AN B=Xiedom#: AiM Bi. (3)

Proof. It is enough to prove the formula (2).

It’s obvious that A\i € dom%2l: AilLIBi D A, B.

Let C D A, B. Then (for every i € dom ) Ci D Ai and Ci O Bi. Thus Ci D Aill Bi that is
CDOMiedom®A: Ail Bi. O

Corollary 16. If 2; are lattices then 2 is a lattice.

Obvious 17. If 2; are distributive lattices then 2l is a distributive lattice.
Obvious 18. If 2; are (co-)brouwerian lattices then 2l is a (co-)brouwerian lattice.
Proposition 19. If 2, are boolean lattices then [] 2l is a boolean lattice.

Proof. We need to prove only that every element a € [] 2 has a complement. But this complement
is evidently A\ € dom a: a;. O

Proposition 20. If 2; are lattices then for every Se€ Z ] 2
1. | S=Xiedom: | | {x; | x €S} whenever | | {z; | z €S} exists;
2. N S=Xxiedom: []{z; | x€ S} whenever [ {z; | x €S} exists.
Proof. It’s enough to prove the first formula.
(Medom®: | | {x; | x€S})i= ] {z: | x €S} D, for every x € S and i € dom 2.
Let y Jx for every x € S. Then y; J x; for every i € dom 2 and thus y; 3 | | {z; |z €S} =

(M edom®A: | | {x; | x€S}); that is y D iedomA: | | {z; | x €S}
Thus | | S=Xe€dom®: | | {z; | x € S} by the definition of join. O
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Corollary 21. If 2; are complete lattices then 2 is a complete lattice.

Proposition 22. If each 2; is a separable poset with least element (for some index set n) then
I] & is a separable poset.

Proof. Let a#b. Then Ji € dom: a; # b;. So Jx €A;: (x3k a; Ax<b;) (or vice versa).
Take y=(((dom®A)\ {¢}) x {0}) U{(4;2)}. Then y*a and y=b. O

Obvious 23. If every %; is a poset with least element 0;, then the set of atoms of J] 2 is

{({k} x atoms®*) U (Xi € (dom ) \ {k}:0;) | k € dom A}.

Proposition 24. If every 2, is an atomistic poset with least element 0;, then J] 2 is an atomistic
poset.

Proof. z;= | | atoms z; for every z; € 2;. Thus

r=XM€€domuz:x;= |_| atoms z; = |_| )\jedomx:{g? g;;;

Take join two times. O

i€dom x i€dom x

Corollary 25. If 2; are atomistic complete lattices, then J] 2( is atomically separable.
Proof. Proposition 14 in [4]. O
Proposition 26. Let (U;en; 3ien) is a family of filtrators. Then (][] 2; [] 3) is a filtrator.

Proof. We need to prove that [] 3 is a sub-poset of [] . First [ 3 C J] 2 because 3; C2;
for each i en.

Let A, Be [ 3and A clI3 B. Then Vi € n: A; C3 Bj; consequently Vi € n: A; C% B; that is
Acl®*p. O

Proposition 27. Let (U;en; 3icn) is a family of filtrators.

1. The filtrator (J] 2 [] 3) is (finitely) join-closed if every (; 3;) is (finitely) join-closed.
2. The filtrator ([] 2; [ 3) is (finitely) meet-closed if every (2;; 3;) is (finitely) meet-closed.

Proof. Let every (2;; 3;) is finitely join-closed. Let A, B € [] 3. Then A U3 B =) en:
A;M3 B;=Xen: A; 1% B,= AUl* B,

Let now every (2(;; 3;) is finitely join-closed. Let S € & [] 3. Then [_|H3 S = Xi € dom 2:
|_|3i {z; | z€S}=Xiedom®: | [* {z;| xS} = |_|Hm S.

The rest follows from symmetry. U

Proposition 28. If each (2(;; 3;) where i € n (for some index set n) is a down-aligned filtrator with
separable core (for some index set n) then (] 2; [ 3) is with separable core.

Proof. Let a#b. Then Ji€n:a;#b;. So Iz € 3;: (z, a; Ax<b;) (or vice versa).
Take y=((n\{i}) x {0}) U{(%;2)}. Then we have y*a and y=<b and y € 3. O

Proposition 29. Let every 2, is a bounded lattice. Every (2;; 3;) is a central filtrator iff (] 2;
[T 3) is a central filtrator.

Proof. x € Z([] %) < Iy e [] A (zﬂy:OHmAzuyzlnm)®3y€ [T Vi € dom 2A:
(i My, =0% A x; Uy, = 1%) & Vi € dom A3y € Ay: (2 M y; = 0% Az U y; = 1%9) & Vi € dom A
x, € Z(2;). O

Proposition 30. For every element a of a product filtrator ([] 2; [] 3):

L. up a= HiGdoma up a;
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2. downa=[] down a;.

i€doma

Proof. We will prove only the first as the second is dual.
upa={ce€ [[3|cTa}={ce [[3|Viedoma: ¢ Ja;} ={ce [[ 3|Vi € dom a:
ci€upa;}= Hiedomaupai. O

Proposition 31. If every (2; 3;) is a filtered complete lattice filtrator, then (J] 2; J] 3) is a
filtered complete lattice filtrator.

Proof. That ] 2l is a complete lattice is already proved above. We have for every a € [] 2
|_|HQ[ upa=Xiecdom®A: [|{zi|zcupa}l=XiedomA: [[{z|z€upa;}=Xiecdom:
[1upa;=Xie€dom: a; =a. O

Obvious 32. If every (2; 3;) is a prefiltered complete lattice filtrator, then ([] &; J] 3) is a
prefiltered complete lattice filtrator.

Proposition 33. Let 2; is a non-empty poset. Every (2; 3;) is a semifiltered complete lattice
filtrator iff ([] 2; [] 3) is a semifiltered complete lattice filtrator.

Proof. upa Dupb< Ai e domA:upa; Dupb;= Ai €domA: a; Cb;<a b for every a,be [[ A
(used the fact that up a; # 0 because up is injective). O
Proposition 34. Let (2;; 3;) are filtrators and each 3; is a complete lattice. For a € ] 2:

1. Cora = Ai € doma: Cor a;;

2. Cor’a= i € dom a: Cor’ a;.
Proof. We will prove only the first, because the second is dual.

Cora= |—|H3 upa=AXAicdoma: |—|3i {z; | z€upa}=Xi€doma: |—|3i {z | z€upa;}=X iedoma:
|—|3i up a; = Ai € dom a: Cor a;. ]

Proposition 35. If each (2;; 3;) is a filtrator with (co-)separable core, then (] %; [] 3) is a
filtrator with (co-)separable core.

Proof. We will prove only for separable core, as co-separable core is dual.
=12 y < Vi€ dom A x; =% y; = Vi € dom AIX € up 2 X =% y; & IX € up 2Vi € dom A:
X, =%y, = 3X cupx: X <I?y for every z,y e [] A O

Obvious 36.
1. If each (2; 3;) is a down-aligned filtrator, then (J] 2; [] 3) is a down-aligned filtrator.
2. If each (2;; 3;) is an up-aligned filtrator, then (][] 2; [] 3) is an up-aligned filtrator.

Proposition 37. If every b; is substractive from a; where a and b are n-indexed families of
distributive lattices with least elements (where n is an index set), then a \ b= Xi € n:a; \ ;.

Proof. We need to prove (Ai €n:a; \b;)Mb=0and aUb=>bU (N €n:a; \b).
Really, (Mi € n:a; \ b)) Mb=Xi €n: (a; \ b)) Mb;=0and bU (A €n:a; \ b)) = \i €n:
bil_l(ai\bi):)\iEn:bani:al_lb. O

Proposition 38. If every 2; is a distributive lattice, then a \*b=Ai € dom: a; \*b; for every a,
be J] & whenever every a; \*b; is defined.

Proof. We need to prove that Ai e dom:a; \*b;=[]{z€[[ A |albUz}.
To prove it is enough to show a; \* b, = [ {zi|z € [] % a CbU z} that is a; \* b; =
[1{z€U | aiCb;Llz} what is true by definition. O

Proposition 39. If every 2; is a distributive lattice with least element, then a#b = \i € dom :
a;#b; for every a,be J] A whenever every a;#b; is defined.
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Proof. We need to prove that Ai € dom2l: a;#b;=[]{z€ [[ A | 2Carz=xb}.

To prove it is enough to show a;#b; = [ {z:i|z€ [[ A, 2 C a A z < b} that is a;#b; =
[1{z€U | 2Ca;AVjedom®: z;<b;} that is a;#b;=[|{z€A; | zCa; Azxb;} (take z;=0 for
j# 1) what is true by definition. O

Proposition 40. Let every 2; is a poset with least element and a; is defined. Then a* = \i € n: aj.

Proof. We need to prove that Ai edom:af=| | {c€ | ¢xa}. To prove this it is enough to show
that af = || {ci | ceU,exa} thatisaf = || {¢; | ceA,Vjenic;<a;} that isaf = || {ci | ce,
ci=<a;} (take ¢; =0 for j+#1) that is af = | | {c €2 | ¢ < a;} what is true by definition. O

Corollary 41. Let every 2; is a poset with least element and a; is defined. Then at=\i €n:a;.

Proof. By duality. U

5 Definition of staroids

Let n be a set. As an example, n may be an ordinal, n may be a natural number, considered as a
set by the formula n={0,...,n — 1}. Let A=%2;¢,, is a family of posets indexed by the set n.

Definition 42. I will call an anchored relation a pair f = (form f; GR f) of a family form(f) of
sets indexed by the some index set and a relation GR(f) € Z[] form(f). I call GR(f) the graph
of the anchored relation f. I denote Anch(2l) the set of small anchored relations of the form 2.

Definition 43. An anchored relation on powersets is an anchored relation f such that every
(form f); is a powerset.

I will denote arity f =dom form f.

Definition 44. Every set of anchored relations of the same form constitutes a poset by the formula
JEg&GRfFCGRy.

Definition 45. An anchored relation is an anchored relation between posets when every (form f);
is a poset.

Definition 46. Let f is an anchored relation. For every i € arity f and L€ [] ((form f)(arity £)\{i})
(val f)iL={X € (form f); | LU{(i; X)} e GR [}

(“val” is an abbreviation of the word “value”.)
Obvious 47. X € (val f);L< LU{(i; X)} €GR f.
Proposition 48. f can be restored knowing form(f) and (val f); for some i € n.

Proof. GR f={K € [] form f | K € GR f} = {LU{(5; X)} | L € ] (form f)|(arity )\ {i}>
X € (form )0, LU{(i X)} € GR £} = {LU{(i: X)} | L& [T (form )liasey p 1y, X € (val f)iL}. O

Definition 49. A pre-staroid is an anchored relation f between poset such that (val f);L is a free
star for every i € arity f, L € [] (form f)|(arity £)\{i}-

Definition 50. A staroid is a pre-staroid whose graph is an upper set (on the poset if anchored
relations of the form of this pre-staroid).

Proposition 51. If L€ [] form f and Li=0rm )i for some i € arity f then L¢ f if f is an pre-
staroid.

Proof. Let K = L|(arity f)\{i}- We have 0¢ (val f);K; KU{(i;0)} ¢ f; L& f. O
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Definition 52. Infinitary pre-staroid is such a staroid whose arity is infinite; finitary pre-staroid
is such a staroid whose arity is finite.

Next we will define completary staroids. First goes the general case, next simpler case for the
special case of join-semilattices instead of arbitrary posets.

Definition 53. A completary staroid is a poset relation conforming to the formulas:

L. VK e [] form f: (K D LoANK 3 L1 = K €GR f) < 3cec{0,1}™: (Ai € n: Loyi) € GR f for
every Lo, L; € [] form f.

2. If Le [] form f and L; =05 )i for some i € arity f then L ¢ f.
Lemma 54. Every completary staroid is an upper set.

Proof. Let f is a completary staroid. Let Lo C L; for some Lo, L1 € [] form f and Ly € f.
Then taking ¢ = n x {0} we get \i € n: Leyi = Ai € n: Loi = Lo € f and thus L; € f because
L3 LoA L 3L, 0

Proposition 55. A relation between posets whose form is a family of join-semilattices is a com-
pletary staroid iff both:

1. LoU L1 €GR f<3ce{0,1}™ (Ai€n: Loyyi) € GR f for every Lo, Ly € [] form f.

2. If L[] form f and L; =05 /)i for some 4 € arity f then L¢ f.

Proof. Let the formulas (1) and (2) hold. Then f is an upper set: Let Ly C Ly for some Lo,
Lie J] form f and Lo € f. Then taking c=mn x {0} we get A\i € n: Lcyi=Ai €n: Loi = Lo € f and
thus L1=LoUL; € f

Thus to finish the proof it is enough to show that

LoUL1€GR f& VK € [[ form f: (K 3LoAK 3L = K €GR f)
under condition that GR f is an upper set. But this is obvious. (]
Proposition 56. A completary staroid is a staroid.

Proof. Let f is a completary staroid.

Let K € Hie(amy A\ (form f);. Let Lo= K U {(i; Xo)}, L1 = K U {(¢; X;1)} for some Xy,
X1€2;. Then XoUX;€(val f); K< LoUL €GR f<3ke{0,1}: KU{(i; Xk)} € GR f< KU{(4;
Xo)te fVKU{(i; X1)} eGR f& Xoe (val f); KV X5 € (val f); K.

So (val f);K is a free star (taken in account that K;=00m/i= f¢ ).

f is an upper set by the lemma. O

Lemma 57. Every finitary pre-staroid is completary.

Proof. Jc e {0,1}™ (Ai €n: Louyi) € GR f<3ce€{0,1}" 1 ({(n —1; Lo(n — 1))} U(Nien — 1
Leyi)) € GR f V ({(n — 1; Li(n — 1))} U (Ai € n — 1: Lyyyi)) € GR f & Je € {0, 1}"~ 1
Lo(n — 1) € (val f)n_1(Ai€n —1: Leyi) V Li(n — 1) € (val f)p—1(Ai € n — 1: Le;yi) < 3e € {0,
13"~ WK e ] form f: (K 3Lo(n—1)VK JLi(n—1)= K € (val f)n_1(Ai€n—1: ;i) < e {0,
13"~ WK, 1€ (form f)—1: (Kn—1 3 Lo(n—1) VK, 1dLin—1)={n—-1K)}uXien—1:
L.iyi)€GR fe...eVKe [] form f: (K JLoAK 3L = KcGR f). O

Exercise 1. Prove the simpler special case of the above theorem when the form is a family of join-semilattices.

Theorem 58. For finite arity the following are the same:
1. pre-staroids;

2. staroids;
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3. completary staroids.

Proof. f is a finitary pre-staroid = f is a finitary completary staroid.
f is a finitary completary staroid = f is a finitary staroid.
f is a finitary staroid = f is a finitary pre-staroid. O

Definition 59. We will denote the set of staroids, pre-staroids, and completary staroids of a form
2 correspondingly as Strd(2(), pStrd(2), and cStrd(2l).

6 Upgrading and downgrading a set regarding a filtrator
Let fix a filtrator (2; 3).

Definition 60. || f= fN3 for every f e P (downgrading f).

Definition 61. 17 f={LeU | upL C f} for every fe€ X3 (upgrading f).

Obvious 62. acTf<upa C f for every f€ 23 and a2l

Proposition 63. || ] f= f if f is an upper set.

Proof. |11 f=11fN3={Le3|upLCf}={Le3 |uplef}=FfnP3="F. 0

6.1 Upgrading and downgrading staroids

Let fix a family (2(; 3) of filtrators.
For a graph f of a staroid define || f and 17 f taking the filtrator of (J] 2(; I 3)-
For a staroid f define:
form]|f=3 and GR|]f=]] GR f;
formTf=2A and GRIIf=1TGR .

Proposition 64. (val || f));L = (val f);L N 3; for every L € [ 3|(arity £)\{i}-

Proof. (val || f));L = {X € (form f); | L U {(; X)} € GR fn [] 3} = {X € 3;| L U {(s;

Proposition 65. Let (2;; 3;) are finitely join-closed filtrators with both the base and the core
being join-semilattices. If f is a staroid of the form 2, then || f is a staroid of the form 3.

Proof. Let f is a a staroid.
We need to prove that (val || f);L is a free star. It follows from the last proposition and the
fact that it is join-closed. O

Proposition 66. [[>" a=17[| [[>™ a if each a; €A; (for i €n where n is some index set) where
2A; is a separable poset with least element.

Proof. 1|l [[™a={Le T[A|LC [[a} ={Le [[A|VK € L: K # a} =
{Le]][ Y| L*a}= HStrd a (taken into account that [ 2 is a separable poset). O

6.2 Displacement

Definition 67. Let f is an indexed family of pointfree funcoids. The displacement of the pre-
staroid

p€ A=pStrd(\i € dom f: FCD(Src f;; Src g;))
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is defined as a staroid
q € B=pStrd(Ai € dom f: RLD(Src f;; Src g;))
such that
q= TT(B;C;TB)u(A;C;TA)p

where C = pStrd( Hiedomf Src fi; Hiedomf Dst fi).

Definition 68. We will define displaced product of a family f of funcoids by the formula:
1®" f=pp( 11 f).

Remark 69. The interesting aspect of displaced product of funcoids is that displaced product of
pointfree funcoids is a funcoid (not just a pointfree funcoid).

7 Multifuncoids

Definition 70. I call an pre-multifuncoid sketch f of the form 2 (where every 2; is a poset) the
pair (2; o) where for every i € dom «

Qg H A (dom 21)\ {13 2i-
I denote (f)=au.

Definition 71. A pre-multifuncoid sketch on powersets is a pre-multifuncoid sketch such that
every 2; is the set of filters on a powerset.

Definition 72. I will call a pre-multifuncoid a pre-multifuncoid sketch such that for every 1,
jedomand Le J] A

Li% @i Ll(aom )\ (iYL # @ L] (dom L)\ (- (4)
Definition 73. Let 2 is an indexed family of starrish posets. The pre-staroid corresponding to a
pre-multifuncoid f is [f] defined by the formula:
form [f]:Ql and LeGR [f]@Lz;ﬁ <f>iL|(dom L\ {i}-

Proposition 74. The pre-staroid corresponding to a pre-multifuncoid is really a pre-staroid.
Proof. By the definition of starrish posets. O
Definition 75. I will call a multifuncoid a pre-multifuncoid to which corresponds a staroid.

Definition 76. I will call a completary multifuncoid a pre-multifuncoid to which corresponds a
completary staroid.

Theorem 77. Fix some indexed family 2 of boolean lattices. The the set of multifuncoids g
bijectively corresponds to set of pre-staroids f of form 2 by the formulas:

1. f=]g] for every i €edom®, Le [] ;

Proof. Let f is a pre-staroid of the form 2. If « is defined by the formula o; L = (f);L then
Oy, L = (val f);L. Then

Li# a; L] (dom 0\ {iy= L € [ Lj% oy L (dom L)\ {5}-
For the staroid f’ defined by the formula L € f’< L;% a; L|(dom 1)\ {i} We have:

Lef'& Loy L|(dom L)\{i}<:>Li € (val f)iL|(dom L)\{i}<:>L € f;
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thus f'=f.
Let now « is an indexed family of functions «; € 2[5 conforming to the formula ().
Let relation f between posets is defined by the formula L € f < L;% o; L|(dom £)\{i}- Then

(val f)iL: {KEQll | K*aiLkdomL)\{i}} :K:(’)aiL|(domL)\{i}

dom )\ {7}

and thus (val f);L is a core star that is f is a pre-staroid. For the indexed family o’ defined by
the formula aj L = { f);L we have
O L=0(f);,L={Ke; | K*a;L}=0q;L;
thus o’ =a.
We have shown that these are bijections. (|

Theorem 78. (f);(LU{(HXUY)})=(f);(LU{GEX)}HU(f);(LU{(#Y)}) for every staroid f
if (form f); is a boolean lattice and i, j € arity f.

Proof. Let i carity f and L € erL\{z}j} Ap. Let Z ;.

ZF () (Lu{(i XUY)) e LUu{(i XUY), (j; 2)} € fe XUY € (val f)J(L U{(j;
Z)}) e X eval f)i(LU{(j; 2)} VY € (val f)i(LU{(j; 2)}) & LU{(i; X), (j: Z)} € f v LU{(i; ),
(13 2)y € feMZ 4 (f);(LU{(X)}) VZ#(f);(LU{(:Y)})

Thus (f);(LU{(i; X UY)}) = (f);(LU{( X)) U(f)(LU{(Y)}). O

Let us consider the filtrator ( [Licaricy 5 S((form f)o): T copigy 5 (form 1))

Theorem 79. Let (2;; 3;) is a family of join-closed down-aligned filtrators filtrators whose both
base and core are join-semilattices. Let f is a pre-staroid of the form 3. Then 1] f is a staroid of
the form 2.

Proof. First prove that GR {1 f is a pre-staroid. We need to prove that 0 ¢ (GR 1] f); (that
is up 0 ¢ (GR f); what is true by the theorem conditions) and that for every X, Y € 2; and

Le Hie(amy PV A; where ¢ € arity f
LU{(G; XU }IEGRN e LU{EGX)}eGRITFVLU{GEGIY)EGRITTS.
The reverse implication is obvious. Let LU{(;; X UY)} € GR 1T f. Then for every L€ L and X € X
Y €Y we have and X 113 Y JX U Y thus LU {(i; X 3 Y)} € GR f and thus
LUu{(#X)}eGR fVLU{(#Y)}eGR f
consequently LU{(5; X)} e GRTfFVLU{(i;V)}eGRTS.
It is left to prove that T f is an upper set, but this is obvious. O

There is a conjecture similar to the above theorems:

Conjecture 80. L€ [f]=[fIN]];cqomq atoms L;# 0 for every multifuncoid f of the form whose
elements are atomic posets. (Does this conjecture hold for the special case of form whose elements
are posets on filters on a set?)

Conjecture 81. Let U be a set, § be the set of f.o. on U, B be the set of principal f.o. on U, let
n be an index set. Consider the filtrator (§"; ™). Then if f is a completary staroid of the form
PB", then 1T f is a completary staroid of the form F".

8 Join of multifuncoids

Pre-multifuncoid sketches are ordered by the formula f C g< (f) C (g) where C in the right part
of this formula is the product order. I will denote M, U, [], | | (without an index) the order poset
operations on the poset of pre-multifuncoid sketchs.
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Remark 82. To describe this, the definition of order poset is used twice. Let f and g are posets
of the same form A

(f)E(g)=Vicdom: (f);E(g); and (f);C(g)i=VLe H Al (doma\ {i}: ()i L E(g)i L.

Theorem 83. f LPFCP®) g — £ 1) g for every pre-multifuncoids f and g of the same form 2 of
distributive lattices.

Proof. «; acd:effix U g; x. It is enough to prove that « is a multifuncoid.
We need to prove:
Li @i L|(@om £\ {iy= L % 0 L (dom L)\ {5}-
Really, L; % o L|@om)\{iy=Li ¥ fi Lldom)\{i}Ugi Ll(domp)\1iy&Li ¥ fi Ll(domp)\{i}V

Li # gi Ll@omon\{iy=Ly # fi Ll@omniyVLj # 95 Ll@om iy L % fi Lldom )\ (53l
95 Ll(dom £)\ (3L % @ L|(dom L)\ {5} O

Theorem 84. UPFCD(Q{) F = || F for every set F' of pre-multifuncoids of the same form 2 of join
infinite distributive complete lattices.

Proof. «; zd:e l—lfeF fix. It is enough to prove that « is a multifuncoid.
We need to prove:
Li?k aiL|(domL)\{i}<:>Lj ?E ajL|(domL)\{j}-
Really, Li % ai L|(aom 0\ iy Li % U e p fi Lldom L)\ (i3 3f € F: Li% fi L(aom )\ iy=3f € F:
L fi Lldom L\ (539 Li # Uy e p f5 Llom )\ {5y L # @5 Ll (dom L)\ 5} .

Proposition 85. The mapping f+ [f] is an order embedding, for multifuncoids of the form 2( of
separable starrish posets.

Proof. The mapping f + [f] is defined because 2 are starrish poset. The mapping is injective
because 2 are separable posets. That f+ [f] is a monotone function is obvious. O

Remark 86. This order embedding is useful to describe properties of posets of pre-staroids.

Theorem 87. If f, g are multifuncoids of the same form 20 of distributive lattices, then
fLPFEPR) ¢ e FCD(A).

Proof. Let A€ [fI_IPFCD(Ql) } and B J A. Then for every k € dom %l
Ak* (fl—lpFCD(Ql) )A|(dom2l N{k}— (fl—lg)A|(dole N{k}— f(A| dole)\{k}) I—lg(A|(dom2l \{k})

Thus A 7& f(A|(dole \{k}) Vv Ag ?& g(A|(domQ[ \{k}) A e [ ]\/A € [g] [ ] VB € [ ];
By # f(Blaomans)) V B # 9(Bloman (k)i f(Blomaniry) U 9(Blaomanixy) = (f
9)B|(doman (3= f PP ) Bl qom ey (£ Br. Thus B € [ fLPFEPE g], 0

Theorem 88. If F' is a set multifuncoids of the same form 2 of join inifinite distributive complete
lattices, then | PF<P™) £ e FCD().

Proof. Let Ae [ UPFCD(Q[) f} and B 3 A. Then for every k € dom 2.
c
Apk ( Wi F)Al(dole)\{k}:( LI F)Algom 2\ (x3= L s o f (Al (dom20\ {})-
Thus 3f € F: Ap % f(Al@oman{xy); 3f € F: A € [f]; B € [fIVB € [g]; 3f € F: By %
c
F(Bldoman{x1)s L ser f(B|(dole)\{k}):(ng)B|(domQ[)\{k}:(|_|pF D) F)B|(domQ[)\{k}5£Bk~
Thus B | |JP*° F|. O

Conjecture 89. The formula f UFP®Y g e cFCD(2) is not true in general for completary
multifuncoids (even for multifuncoids on powersets) f and g of the same form 2.
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9 Infinite product of elements and filters

Definition 90. Let A; is a family of elements of a family 2A; of posets. The staroidal product
HStrd(m) A; is defined by the formula (for every L e [] )

Strd(2A) Strd(2A)
form J[ A= and LeGR [][ AeViedom2A:A;#L;

Theorem 91. Staroidal product is a completary staroid (if our posets are distributive lattices).

Proof. We need to prove
Viedom®l: A; ;ﬁ (L()’L ULy ’L) &dce {0, 1}"V’L €dom®A: A; ;ﬁ Lc(z) 7.

Really, Vi € domQ4: A; % (LoiU Ly i) < Vi€ domQA: (A3 Loi V A% Lyd) < 3e€ {0, 11900 ¥ € dom A:
Ai* Lc(i) 7. O

Definition 92. Let 2 is an indexed family of posets with least elements. Then funcoidal product
is defined by the formulas:

0 otherwise.

FCD(2A) FCD(2() e\ CA. )
o 1 4= wa e[ a) o f o e om0 00 A
k

Proposition 93. HStrd(Q[) A= [ HFCD(Ql) A]

Proof. L € GR [[*™™ A< Viedom Az A; # Ly Vi € (dom A) \ {k}: A; £ Li A Ly # A <
A (T1FP™ A) Lo LeGR[ I[P 4. O

Corollary 94. Funcoidal product is a completary multifuncoid.

Proof. It is enough to prove that funcoidal product is a pre-multifuncoid. Really,

FCD(A) FCD(2)
LiiGR H A L|(d0mg[)\{i}<:>V’i€d0le:AiiLiﬁLjiGR H A L|(domQ[)\{j}- ]

7 J

Thsec()jr('g)m 95. If our filtrator ([] 2; [] 3) is with separable core and A € [] 3, then 17 HStrd(‘?’) A=
H tr A

Proof. GR 11 [[°™®) 4 = {L eA|L C G A} —{LeA|VK € L, i € dom 2A:
Ak K} ={Le | Vicdom, K €Ly A K} ={LeA | VicdomA: A;# L;} =GR [[°™™ A. O

Proposition 96. Let ([] 2; [ 3) is a meet-closed filtrator. Then || [T>"®™) A= []°"®) 4.

Proof. GR || J[°™™ A4 = |IGR [[®™®™ A= ||{L € [] 2|Vi € dom A: 4; % L;} =
{Le[ 2| ViedomA: A4 LIN]] 3={Le[[3|VicdomA: A #L;}=CR [[*™® 4. O

Theorem 97. Let § is a family of sets of filters on distributive lattices with least elements. Let
ac ][ F SeP]] Fis a generalized filter base, [] S =a. Then

Strd(%) Strd(F)
1T a|_|{ 1T A|AGS}.

Proof. That [[°"*® 4 is a lower bound for { [1°7®) A e S} is obvious.
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Let f is a lower bound for { HStrd(g) A|lAe S}. Thus for every A € S we have L € GR f
implies Vi € dom2: A; % L;. Then, by properties of generalized filter bases, Vi € dom 2: a; % L; that
is LeGR [[°™® q.

So fC [1°™® a. O
Theorem 98. Let § is a family of sets of filters on distributive lattices with least elements. Let
ac ][ 8 SeZ]] Fis a generalized filter base, [ | S=a, f is a staroid of the form [] §. Then

Strd (%) Strd(2A)

[[ etrevAes: J[ A#r

Proof. It follows from the previous theorem by properties of generalized filter bases. O

9.1 On products of staroids

Definition 99. H(D) F={uncurryz | z€ [[ F'} (reindexation product) for every indexed family
F of relations.

Definition 100. Reindexation product of an indexed family F' of anchored relations is defined by

the formulas:
(D) (D) (D)

form H F =uncurry(formo F) and GR H F= H (GRo F).

Obvious 101.
1. form H(D) F={((i;5); (form F});) | i edom F, j € arity F; };
2. GR [1"” F={{((i:); (zi)j) | i €dom F, j € anity F;} | z€ [ (GRoF)}.

Proposition 102. H(D) F' is an anchored relation if every Fj; is an anchored relation.

Proof. We need to prove GR [ (P)F € 2] form([] P)F) that is

GR[] PFCT] form([] P'F)

{uncurry z | z€ [[ (GRoF)} € Z ] {((3; j); (form F}) ;) | i €dom F, j € arity F; };

{uncurry z | z € [T (GRo F)} € [T {((3; j); (form F3) ) | i € dom F', j € arity F; }

(G ) (z0)j) | iedom P, jearity Fi} | € [ (GRo F)}C T {((7:); (form F)) | i €dom F,
j € arity F; };

Vze J] (GRo F),iedom F, j € arity F;: (zi)j € (form F}) ;.

Really, zi € GR F; C [] (form F;) and thus (z4)j € (form F}) . O

Remark 103. I suspect that the above proof can be simplified.

Obvious 104. arity [["”) F =[], ... p arity F;={(i;5) | i € dom F, j € arity F;}.
Definition 105. f x(P) g= H(D) [f; 9]

Lemma 106. H(D) F' is an upper set if every F; is an upper set.

Proof. We need to prove that H(D) F'is an upper set. Let a € H(D) F and an anchored relation
b Ja of the same form as a. We have a =uncurry z for some z € [[ F that is a(i; j) = (zi)j for all
i€dom F and j € dom F; where zi € F;. Also b(4; j) Ja(i; j). Thus (curry b)i J zi; currybe [[ F
because every Fj; is an upper set and so b€ H(D) F. O

Proposition 107. Let F is an indexed family of anchored relations and every (form F'); is a join-
semilattice.

1. H(D) F' is a pre-staroid if every Fj is a pre-staroid.
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2. H(D) F' is a staroid if every Fj; is a staroid.

3. H(D) F' is a completary staroid if every F; is a completary staroid.
Proof.

1. Let g € arity H(D) F that is ¢=(i; j) where i edom F, j € arity F;; let

(D)

Le H (form H F>|(arityH(D)F)\{q}

that is L, € (form H(D) F)(_ : for every (i'; j') € (arity H(D) F) \ {¢}, that is
i35’
L, € (form F;) ;. We have X € ( form H(D) F) e X € (form F);. So

(4:9)

(D) (D)
(valHF) L:{Xe(formFi)j|LU{((i;j);X)}EGRHF}
(i55)
(D)
(val H F) L={X¢€(formF); | 3z ¢ H (GRo F): LU{((i; j); X)} =uncurry z }
(i55)

(D)
(val 11 F) L= {X € (form F); | 3z € [] ((GROF)|(arityH(D)F)\{(i;j)}),vGGRFZ-:
(4:9)

(L=uncurry z Av; = X)

(var 1 F)(i_j)L = {X € (form F); | 32 € [ ((GR © F)l(uiey 1oy igy ) L =

uncurryz/\ﬂvEGRFi:vj:X}
If 3z € I ((GR o F)'(arityH(D)F)\{(i;j)}): L = uncurry z is false then

(val H(D) F)(. .)L: () is a free star. We can assume it is true. So
i5J
D)
Val]._.[F L={Xe€(formF;); | weGR Fi:v;=X}.
(455)
Thus

(D)
(Val H F)( )L:{XE (formﬂ)j | K € (formFi)|(arityFi)\{j}:KU{(j;X)} EGRFi}:
3V

{X e(form F}); | 3K € (form F;) | (arity ri)\ {1 KU{(j; X)}EGRF;} ={X € (form F}); | 3K €
(form Fy)| arity o\ (53: X € (val Fj) K }.

Thus AU B € (val T[ F)(i_j)L & 3K € (form F)|(aity i\ (53: A U B € (val Fj)K &
3K € (form F})|(arity m)\ {5} (A c (val F}) vV B € (val F))) & 3K € (form F})|(arity £,)\{5}:
A€ (val Fj)K V 3K € (form F})|(arity )\ (j}: A € (val Fj)) K & A € (val H(D) F)(i‘j)L Y
Be (Val H(D) F)(i;j)L. Least element 0 is not in (val H(D) F)(i;j)L because K U {(J;
0)} ¢ GRF;.

2. From the lemma.

3. We need to prove

(D) (D) (D)
LoULeGR [ Fe3eedo, 1oty TP, ()\i carity [] F: Lc(i)i> €EGR[[ F
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for every Lo, Ly € [] form H(D) F that is Lo, L1 € [] uncurry(formo F).

Really Lo L € GR [['P) F& LoU Ly € {uncurry z | z€ [[ (GRo F)}.

Je € {0, 3 II7F (i € n: Lgyi) € GR [P F & 3c € {0, 1} 17, ()\i €
arity [[?) F: Lc(i)i) € {uncurry z | z€ J] (GRo F)} < 3c € {0, 1}arityH(D)F: curry()w' €
arity H(D) F: Lc(i)i) €[] (GRo F) < 3ce{0,1}w e, curry()\ (¢; j) € arity H(D) F:
L) (i j)) € I (GR o F) & 3c € {0, 1}™IIF. (\i € dom F: (A\j € dom Fy

Legii(is ) € TI (GR o F) & 3c € {0, 1} II”Fyj ¢ dom F: (A\j € dom Fy: Legisj(i;
j)) € GR F; & Vi € dom F3c € {0, 1}%mF: (A\j € dom Fi: Ley(i; §) € GR F;
Vi € dom F3c € {0, 1}4omF: (Xj € dom Fy: (curry(Lej))i)j) € GR F; < Vi € dom F:
(curry(Lo)iUcurry(L1)i € GR F;) < LoU Ly € {uncurry z | z€ [] (GRo F')}. O

For staroids it is defined ordinated product H(Ord) as defined in [2].
Obvious 108. If f and g are anchored relations and there exists a bijection ¢ from arity g to
arity f such that {Foy | F€GR f} =GR g, then:

1. f is a pre-staroid iff ¢ is a pre-staroid.

2. f is a staroid iff g is a staroid.

3. f is a completary staroid iff ¢ is a completary staroid.
Corollary 109. Let F is an indexed family of anchored relations and every (form F'); is a join-
semilattice.

1. H(Ord) F is a pre-staroid if every Fj is a pre-staroid.
2. [1°"? F is a staroid if every F} is a staroid.

3. H(Ord) F' is a completary staroid if every F; is a completary staroid.
Proof. Use the fact that GR H(Ord) F= {Fo(@ (domo F))~! | FeGR H(D) f}. O

Definition 110. f x (ord) g= H(Ord) ;9]

Remark 111. If f and ¢ are binary funcoids, then f x (9 ¢ is ternary.

10 Star categories

Definition 112. A pre-category with star-morphisms consists of

1. a pre-category C' (the base pre-category);

2. a set M (star-morphisms);

3. a function “arity” defined on M (how many objects are connected by this multimorphism);
4. a function Obj,,: arity m — Obj(C) defined for every m € M;
5

. a function (star composition) (m; f)— StarComp(m; f) defined for m € M and f being an
(arity m)-indexed family of morphisms of C' such that Vi € arity m: Src f; = Obj,,, ¢ (Src f; is
the source object of the morphism f;) such that arity StarComp(m; f) = arity m

such that it holds:
1. StarComp(m; f) € M;
2. (associativiy law)

StarComp(StarComp(m; f); g) = StarComp(m; Ai € arity m: g; o f;).
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(Here by definition A\x € D: F(z) ={(x; F(x)) | x€ D}.)

The meaning of the set M is an extension of C' having as morphisms things with arbitrary
(possibly infinite) indexed set Obj,, of objects, not just two objects as morphisms of C' have only
source and destination.

Definition 113. I will call Obj,, the form of the star-morphism m.

(Having fixed a pre-category with star-morphisms) I will denote StarHom(P) the set of star-
morphisms of the form P.

Proposition 114. The sets StarHom(P) are disjoint (for different P).
Proof. If two star-morphisms have different forms, they are clearly not equal. O

Definition 115. A category with star-morphisms is a pre-category with star-morphisms whose
base is a category and the following equality (the law of composition with identity) holds for every
multimorphism m:

StarComp(m; Ai € arity m: idow;,, :) = m.

Definition 116. A partially ordered pre-category with star-morphisms is a category with star-
morphisms, whose base pre-category is a partially ordered pre-category and every set

{meM | Obj,,=X}
is partially ordered for every X, such that:

1. mpCEmy A foC f1 = StarComp(my; fo) C StarComp(my; f1) for every mg, mq € M such that
Objm, =Obj,,, and indexed families fp and f1 of morphisms such that

Vi € arity m: Src foi=Src f11=0Dbjm,t=0Dbjn,, ¢ and Vi€ arity m:Dst foi=Dst fi1.

Definition 117. A quasi-invertible pre-category with star-morphisms is a partially ordered pre-
category with star-morphisms whose base pre-category is a quasi-invertible pre-category, such that
for every index set n, multimorphisms a and b of arity n, and an n-indexed family f of morphisms
of the base pre-category it holds

b# StarComp(a; f) < a % StarComp(b; fT).

Definition 118. A quasi-invertible category with star-morphisms is a quasi-invertible pre-category
with star-morphisms which is a quasi-invertible pre-category with star-morphisms.

Each category with star-morphisms gives rise to a category (abrupt category, see a remark
below why I call it “abrupt”), as described below. Below for simplicity I assume that the set M
and the set of our indexed families of functions are disjoint. The general case (when they are not
necessarily disjoint) may be easily elaborated by the reader.

e Objects are indexed (by arity m for some m € M) families of objects of the category C' and
an (arbitrarily choosen) object None not in this set

e There are the following disjoint sets of morphisms:
1. indexed (by arity m for some m € M) families of morphisms of C
2. elements of M
3. the identity morphism idyone on None
e Source and destination of morphisms are defined by the formulas:
o Src f=Aiedom f:Src f;;
o Dst f=XMedom f:Dst f;
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o Srcm=None
o  Dstm=0Dbj,,.
e Compositions of morphisms are defined by the formulas:
o gof=MXi€dom f:g;o f; for our indexed families f and g of morphisms;
o fom=StarComp(m; f) for m € M and a composable indexed family f;
o  moidNone=m for m e M;
o idNone © idNone = idNone-
e Identity morphisms for an object X are:
o M€X:idy, if X # None
o 1dnone if X =None

We need to prove it is really a category.

Proof. We need to prove:

1. Composition is associative

2. Composition with identities complies with the identity law.
Really:

1. (hog)o f=Xiedom f:(h;og;)o fi=Xiedom f:h;o(g;o fi)=ho(go f);
g o (f o m) = StarComp(StarComp(m; f); g) = StarComp(m; Ai € arity m: g; o f;) =
StarComp(m; go f)=(go f)om;
fo(moidNone) = fom=(fom)oidNone-

2. moidNone =m; idpst m 0 m = StarComp(m; i € arity m: idov;,,:) = m. O

Remark 119. I call the above defined category abrupt category because (excluding identity
morphisms) it allows composition with an m € M only on the left (not on the right) so that the
morphism m is “abrupt” on the right.

By [z0;..-;Zn—1] I denote an n-tuple.

Definition 120. Pre-category with star morphisms induced by a dagger pre-category C' is:
e The base category is C.
e Star-morphisms are morphisms of C.
e arity f={0,1}.
e  Objy, = [Srcm;Dstm].
e StarComp(m;[f; g]) =gomo f1.

Let prove it is really a category with star-morphisms.

Proof. We need to prove the associativity law:

StarComp(StarComp(m; [ f; g]); [p; ¢]) = StarComp(m; [po f; go g]).
Really,

StarComp(gomo f1;[p;q]) =gogomo flopt=gogomo (po f)T =StarComp(m; [po f;gog]). U

Definition 121. Category with star morphisms induced by a dagger category C' is the above
definined pre-category with star-morphisms.

That it is a category (the law of composition with identity) is trivial.
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Remark 122. We can carry definitions (such as below defined cross-composition product) from
categories with star-morphisms into plain dagger categories. This allows us to research properties
of cross-composition product of indexed families of morphism for categories with star-morphisms
without separately considering the special case of dagger categories and just binary star-composi-
tion product.

10.1 Abrupt of quasi-invertible categories with star-morphisms
Definition 123. The abrupt partially ordered pre-category of a partially ordered pre-category
with star-morphisms is the abrupt pre-category with the following order of morphisms:

e Indexed (by arity m for some m € M) families of morphisms of C are ordered as function
spaces of posets.

e Star-morphisms (which are morphisms None — Obj,, for some m € M) are ordered in the
same order as in the pre-category with star-morphisms.

e Morphisms None — None which are only the identity morphism ordered by the unique order
on this one-element set.

We need to prove it is a partially ordered pre-category.

Proof. It trivally follows from the definition of partially ordered pre-category with star-mor-
phisms. U

Theorem 124. When a pre-category with star-morphisms is quasi-invertible, the corresponding
abrupt category is also quasi-invertible.

Proof. We need to prove: go f#h< g#ho fT (or equivalently ffo g% h« g% foh) for all kinds
of morphisms.
Consider the cases:

g= idNone'
Subcases:

g = h =idnone. Trivial.
gEM. gofkthegkhs gkhofi

ge M.
fTog#he StarComp(g; f1) % h< g# StarComp(h; f) < g# foh.
g is a family of morphism of C.

flog#heJicdomg: fiTogi%hi@EiGdomg:gi% fiohie g foh. O

11 Product of an arbitrary number of funcoids

In this section it will be defined a product of an arbitrary (possibly infinite) family of funcoids.

11.1 Mapping a morphism into a pointfree funcoid

Definition 125. Let’s define the pointfree funcoid x f for every morphism f or a quasi-invertible
category:

(xfla=foa and ((xf)~")b=fTob.
We need to prove it is really a pointfree funcoid.

Proof. b£ (xflae bk foasak flobsak((xf)~ . O
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Remark 126. (x f)=(fo—) is the Hom-functor Hom( f,—) and we can apply Yoneda lemma to it.

Obvious 127. (x(go f))a=go f oa for composable morphisms f and g or a quasi-invertible
category.

11.2 General cross-composition

Let fix a quasi-invertible category with with star-morphisms. If f is an indexed family of morphisms

from its base category, then the pointfree funcoid H(C) f from StarHom(\: € dom f: Src f;) to
StarHom(Ai € dom f: Dst f;) is defined by the formulas (for all star-morphisms a and b of these
forms):

©) © \!
< H f>a: StarComp(a; f) and << H f) >b= StarComp(b; f7).

It is really a pointfree funcoid by the definition of quasi-invertible category.
In the terms of abrupt categories, these formulas can be rewritten as:

©)

II r=xr.

Theorem 128. ( H(C) g) o ( H(C) f) = H(C) (gio f:) for every n-indexed families f and g of

ien
composable morphisms of a quasi-invertible category with star-morphisms.
Proof. < Hggzl (gio fi)>a = StarComp(a; \i € n: g; o f;) = StarComp(StarComp(a; f); g) and

(99)o (I £))a=(T' 9){ I'” f)a=StarComp(StarComp(as ):9). O

Corollary 129. ( H(C) fk_1) o... O( H(C) fo) = Hggzl (filk—=1)o...0 fi(k)) for every n-indexed

families fo, ..., fn—1, 90, ..., gn—1 composable morphisms of a quasi-invertible category with star-
morphisms.
Proof. By math induction. ([l

11.3 Some properties of staroids
Lemma 130. Let Ag, A; € (P0V)" are two families of sets and 6 € Z((Z0)"). Then

6N H (AQiHAli)sé(Z)@ECE{O,l}n:éﬂ H Ac(l)lsé(b

1€EN 1€EN

Proof. f € Hien (AMLIAM)@WEn: (fiEAQiUAli)<:>ViE7’LZ (fiEAo’L'\/ fiEAl’L')<:>EC€ {0,
1}"V’L en: f; € Ac(i)i<:> dce {0, 1}": fe Hien Ac(i)i~

Fe6N e, AiUAii)e fedniee{0, 1} fe L, Aui < e € {0, 1}
F€IN T],en Acyi=3c€{0, 136N [[,¢,, Aci)i# (). The reverse implication is obvious. O

Theorem 131. Let A=2%;¢,, is a family of boolean lattices.
A relation § € Z [] atoms®®) such that for every a € [] atomsS()

VAGa:éﬂHatomsTmiAi%(béaeé (5)
S
can be continued till the function 17 f for a unique staroid f of the form Ai € n:(2;). The funcoid

f is completary.
For every X' € [],.,, ()

XeGRTTfééﬂHatomsXﬁé(Z). (6)

1EN
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Proof. By the theorem 81 (used that it is a boolean lattice) we have X € GR 1Tf < GR 11
fNTI,;e, atoms X;# 0 and thus (6). From this also follows uniqueness.
It is left to prove that there exists a completary staroid f such that 1T f is a continuation of §.
Consider the relation f defined by the formula X € f<4dn [],,, atoms i X 0.
Iuliefedon],., atomst?i(lopill i) #0< 00 [],., (atomsT?iIyiUatoms 21 4) # .
Thus by the lemma Ip U 1 € f < Jc € {0,1}™ 6N [],., atoms Ml # 0 < Je € {0, 1}™
(Mien: I ;i) € f. Trivially if 3i€n: X; =0 then X ¢ f. So f is a completary staroid.
Let a € [] atomsS®).
The reverse of () is obvious. So we have a € 6 & VA€ a:6N [], ., atoms A, £DSVAEw
Ac feVAcaAe feaC f<aelf. Thus 11 f is a continuation of 4. O

Theorem 132. Let R is a set of staroids of the form i € n: F(2;) where every 2; is a boolean
lattice. If z € [[,., atomsS(®%) then z € GR 1] [|ReVfeRzellf.

Proof. Let denote x € 6 & Vf € R: xz € 1| f for every x € HiEn atoms®(®). For every a €
| . atomsS (%)

VX €a:0N I[,., atoms 1% X; # 0 & VX € adw € [],., atoms 1% Xz € d e VX €adr €
[licn atoms ¥ XVfeRx el f=VX€a, fERITE [Lic, atoms i X;:r e f=VX €a, fER:
XefeVfeRalC feVfeRac|feach.

So by the previous theorem § can be contimued till Tp for some staroid p of the form Ai € n:
B(0:).

Let’s prove p=[] R.

rellpered=azcllfforevery fERandz€ [[,., atomsS®). Thus 11p C 11 f. Consequently
VfeR:pCf.

Suppose that ¢ is a staroid of the form A\i € n: P(2;) such that Vf € R: ¢ C f. Then for every
€ [[,cn atoms® () we have € [J¢=>Vfe Rz el ferederellp. So 11qC1lp that is ¢ C p.

We have proved p = [] R. It’s remained to prove that z € {fp< Vf € R:z € 1] f for every
T€ [[;c, atomsS (). Really, z€ [pozecdaVfeRzellf. O

11.4 Star composition of binary relations

First define star composition for an n-ary relation a and an n-indexed family f of binary relations
as an n-ary relation complying with the formulas:

ObjStarComp(a;f) = {*}n’
L e StarComp(a; f) < JycaVien: y; f; L;

where * is a unique object of the semigroup of small binary relations considered as a category.
Proposition 133. b StarComp(a; f) < 3z €a,y €bVjeniz; fy;.

Proof. We need to prove that b%# StarComp(a; f) < a % StarComp(b; fT).
b StarComp(a; f) < Jy e [ A: (yebAyeStarComp(a; f)) < Ix e [[ A (yebATrcaVjen:
zifijx;)edre [ Arca(yebAViena;fjy;) e Irca, yebVjenz; fy;. d

Theorem 134. The semigroup of small binary relations considered as a category together with
the set of of all n-ary relations (for every small n) and the above defined star-composition form a
category with star-morphisms.
Proof. We need to prove:

1. StarComp(StarComp(m; f); g) = StarComp(m; A\i € n: g; o f;);

2. StarComp(m; Ai € arity m: idows,, i) =m;

3. b StarComp(a; f) < a % StarComp(b; f1)

(the rest is obvious).
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Really,

1. L eStarComp(a; )< Iy € aVi€n: y; fi L;.
Define the relation R(f) by the formula x R(f) y< Vi € n: x; f;y;. Obviously

R(Xi€n:gio fi) =R(g)oR(f).

L e StarComp(a; )<y €a: yR(f) L.

L € StarComp(StarComp(a; f); g) < Ip € StarComp(a; f): pR(g) L < Ip, y € a:
(yR(f) p A pR(g9) L) & Jy € a: y(R(g) o R(f)) L & 3y € a: (yR(Xi € n: gio f;) L) &
L € StarComp(a; Ai € n: g; 0 f;) because p € StarComp(a; f) < Iy € a: yR(f) p.

2. Obvious.

3. It follows from the proposition above. O

Theorem 135. < H(C) f> [Ia=1lcn (fi)a; for every families f = f;c, of binary relations and

a = a;ecn, where a; is a small set *(for each i €n).

Proof. Le < H(C) f>H a< LeStarComp([] a; f)eIye ] aVien:y, fiLieIye [] avien:

{y} # (fimLi} & Vi € n3y € ai {y} * (fiH{Li} & Vi € nta; % (fi WMLi} & Vien:
{Ll}% <fl>a1<:>V’L en: L; € (fi>ai¢>L€ HiEn <fz>az O

11.5 Star composition of Rel-morphisms

Define star composition for an m-ary anchored relation a and an n-indexed family f of Rel-
morphisms as an n-ary anchored relation complying with the formulas:

ODbjstarComp(a; f) = M € arity a: Dst f;;
arity StarComp(a; f) = arity a;
L € GR StarComp(a; f) < L € StarComp(GR a; GR o f).

(Here I denote GR(A; B; f) = f for every Rel-morphism f.)
Proposition 136. b StarComp(a; f) < Jr€a,y €bVjenz; fy;.
Proof. From the previous section. O

Theorem 137. Relations with above defined compositions form a quasi-invertible category with
star-morphisms.
Proof. We need to prove:
1. StarComp(StarComp(m; f); g) = StarComp(m; Ai € arity m: g; 0 f;);
2. StarComp(m; Ai € arity m: idow,, i) =m;
3. b StarComp(a; f) < a % StarComp(b; f1)
(the rest is obvious).

It follows from the previous section. O

Theorem 138. Cross-composition product of a family of Rel-morphisms is a discrete funcoid.

Proof. By the proposition and symmetry H(C) f is a pointfree funcoid. Obviously it is a funcoid
[I;c, Sre fi— Il;c, Dst fi. Its completeness (and dually co-completeness) is obvious. O

11.6 Cross-composition product of funcoids

Let a is a an anchored relation of the form 2 and dom 2 =n.
Let every f; (for all i €n) is a pointfree funcoid with Src f; =%2,.
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The star-composition of a with f is an anchored relation of the form Ai € dom2: Dst f; defined
by the formula

L € GR StarComp(a; f) < Jy € GRaN H atoms A;Vi € n: y; [ fi] L.

1EN
Definition 139. I will call a poset starrish when xa is a free star for every element a of this poset.

Theorem 140.
1. If a is a pre-staroid then StarComp(a; f) is a staroid.

2. If a is a completary staroid and Dst f; is a starrish join-semilattice for every ¢ € n then
StarComp(a; f) is a completary staroid.

Proof.

1. First prove that StarComp(a; f) is a pre-staroid. We need to prove that (val f);L is a free
star, that is {X € (form f); | LU{(j; X)} € GR f} is a free star, that is the following is a
free star

{X e(form f); | R(X)}

where R(X) =3y € [],., atomsA;: (Vi€n: (i# j=yi[fi] Li) Ny [fi] X Ny €a).

R=3ye Hie” atoms A (Vi € n: (i £ j = i [fi] Li) Ny; [fi]) X Ay € (val)j(alny (1) =
Jy € Hien\{j} atoms 2;, y' € atoms 2A;: (Vi € n:y; [fi] Li Ny [f3] X Ny’ € (val)j(aln\g51)) =
y € [1,c, () atomsAiVien:y; [fi] Li Ay’ € atoms 2: (y' [f5] X Ay’ € (val)j(aln\ (51))

If 3y € Hien\{j} atoms 21,Vi € n: y; [fi] L; is false our statement is obvious. We can

assume it is true.
So it is enough to prove that

{X e(form f); | Fy' € atoms Ay (y' [ f;] X Ay' € (val)j(aln\ ;1))
is a free star. That is
Q={X € (form f); | Fy’ € (atoms ;) N (val)j(aln\151): ¥ [f5] X}

is a free star. Qformf); ¢ Q is obvious. That @) is an upper set is obvious. It remains to
prove that XoU X1 € Q= Xo€ QV X; € Q for every X, X7 € (form f);. Let XoU X7 € Q.
Then there exist 3’ € (atoms 2;) N (val) j(aln\¢;3) such that y’ [f;] XoU X;. Consequently
yl [f_]] XoV yl [f_]] X;. But then Xge QV X;€Q.

To finish the proof we need to show that GR StarComp(a; f) is an upper set, but this
is obvious.

2. Let a is a completary staroid. Let LolU L; € GR StarComp(a; f) that is Jy € [I;c, atoms®L;:
(Vi € m:y; [fi] Loi U Lii Ay € a)that is 3c € {0, 1}", y € [],., atoms R (Vi € n:
Yi [fi] Leqiy @ Ay € a) (taken into account that Dst f; is starrish) that is 3c € {0, 1}™
(M €n: Leyyi ) € GRStarComp(a; f). So GR StarComp(a; f) is a completary staroid. [

Lemma 141. b#Ah®) StarComp(a; f) < VA€ a, BEb, i €n: A;[f;] B; for anchored relations a
and b.

Proof.
b StarComp(a; f) <
Jz € Anch(2): (x TbA z E StarComp(a; f)) <
dz € Anch(2): (xCbAVB € x: B € StarComp(a; f)) <
3z € Anch(2): (xIIbAVBE:cEIAG [[ 2(vien:AilfiBirnAca) )| <
i€dom A
Jr € Anch(A): (x COAVB ez, Aca,icn: A;[fi]| Bi) &
VBeb,A€a, zEnA[ ] -
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Theorem 142. a[ H(C) f} beVAca,Beb,ien: A;[f;] B; for anchored relations a and b.

Proof. From the lemma. 0
Proposition 143. b#PSTd®) StarComp(a; f) < b£PS4(P) StarComp(a; f) for staroids a and b.
Proof. Because StarComp(a; f) is a staroid. O

Theorem 144. Anchored relations with above defined compositions form a quasi-invertible cat-
egory with star-morphisms.

Proof. We need to prove:
1. StarComp(StarComp(m; f); g) = StarComp(m; Ai € arity m: g; 0 f;);
2. StarComp(m; Ai € arity m: idows,, i) =m;
3. b StarComp(a; f) < a % StarComp(b; f1)

(the rest is obvious).
Really,
1. L € GRStarComp(a; f) < Iy € GRaN [], ., atomsA;Vi € n:y; [fi] Li.
Define the relation R(f) by the formula z R(f) y< Vi € n: x; [ fi] y;. Obviously

R(Xi€n: gio f;) =R(g)o R(f).
L € GR StarComp(a; f) < 3y € GRaN [], ., atomsA;: y R(f) L.

L € GR StarComp(StarComp(a; f); g) < 3p € GR StarComp(a; f) N [],.,, atoms 2A;:
pR(g)L<3p,ye GRaN [[, ., atoms2;: (yR(f) pApR(g) L)< IyeGRaN [, atomsA;:
y(R(g) o R(f)) L & Jy € GR an [J,., atoms ™A;: yR(A\i € n: g; o fi) L & Jy €
GRan Hien atoms ;i € n: y; [gio fi] Li < L € GR StarComp(a; A\i € n: g; o f;) because
p € GR StarComp(a; f) < Iy € GRaN HiEn atoms A;: y R( f) p.

2. Obvious.

3. It follows from the lemma above. O

Theorem 145. < 1< f> 17" a= [ (fi)a; for every families f = f;c, of pointfree funcoids

€N

and a = a;ecp, Where a; € Src f;, if Src f; (for every i €n) is an atomic lattice.

Proof. L e < H(C) f> HStrd asLe StarComp( HStrd a; f) < Y € [, caoma atomsA;Vi € n:
(yi [fs) Li A yi ¥ a;) & Vi € nTy € atoms Ay (y [fi] Li Ay * a;) & Vi € nia; [fi]) Li & Vi € n:

Strd
Lt (fi)aie Le T8, (fi)ai O
Theorem 146. For every filters ag, a1, by, by we have

ag XFCDbo[f X(C) g} aj XFCDb1<:>a0 XRLDbo[f X(Dp)g] aj XRLDbl.

Proof. ag xRPby[ f xPP) g a1 xRP by & VAg € ao, Bo € bo, A1 € ar, B1 € by: Ag x Bo[ f xPP) g]
A1 X Bl.

Ay XBo[f X(Dp)g] A1 X B1& Ag x Bo[f X(C)g] A1 X B1 & Ay [f] A1 N By [g] Bs.

Thus it is equivalent to ag [f] a1 A bo[g] by that is ag xFP bo[f %« (©) g] ay xFCPp,.

(It was used the theorem M42.) O

Can the above theorem be generalized for the infinitary case?

Proposition 147. GR StarComp(a; \i € n: f; Ll g;) = GR StarComp(a; f) LIPF¢® GR StarComp(a; ¢)
if f, g are pointfree funcoids and every Src f; = Src g; and Dst f; = Dst g; are distributive lattices
with least elements, and a is a multifuncoid of the form Ai € n: Src f;.
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Proof. It follows from the theorem 7?7 in [3]. O

Conjecture 148. GR StarComp(a LIPFCP b; f) = GR StarComp(a; f) UPFCP GR StarComp(b; f) if
f is a pointfree funcoid and a, b are multifuncoids of the same form, composable with f.

12 More on cross-composition of funcoids

Lemma 149. Let f is a staroid such that (form f); is a boolean lattice for each i € arity f. Let
a € Jlcarity ¢ gllorm )i,
EfC HStrd a then T f = StarComp(ﬂf; i € dom 2 I;CD(Q“)).

Proof. Let 11 fC [[°™ a. Then L GR 1] f= L#a.
L eCR StarComp(TTf; Xi € dom 2A: ij'3<%>) s3I eGRIFN ]
" [JF_CD@‘”} LiedyeGRIFN ]

a;

jen atoms ANV € n:
icn atoms AVi € n: (s CLiANyiCa;)) < Jye GR Y
fNTLL .. atoms,Vien: (y; kL ANy ka;)=TyeGRTT N [, .. atoms2A,;Vi e n: y; % L; because
1en 1EN
MfeGRg=y*a.
If L €17 f then there exists ye GR1TfN []
(by the theorem BT).

We have L € GR StarComp(TTf; i € dom U: I(';CD(mi)) < L e1]f that is GR StarCornp(TTf;
Ai € dom 2A: I(';CD(%)) 1 f. The other directoin is obvious. O

atoms 2; such as y C L and thus Vi en: y; ¥ L;

iEN

Theorem 150. Let f is a staroid such that (form f); is a boolean lattice for each i € arity f. Let
ac HiEarity f g(form f)l Then

Strd
1 fAFeRdorm /) TT a= StarComp(TT £: \i € dom 2U: IEfD(Qli)).

Proof. hd:efStarCOmp( ;A edom: I(';CD(m) )

Obviously hC 11 f and h T [[°™ a.

Suppose g C 17 f and g C HStrd a.

rEGgETE StarComp(g; Ai € dom2L: I;CD(Q[i)) =€ StarComp( fidiedom: I;CD(Q[i)) SaxEeh
(used the proposition above).

So g Ch. O

Corollary 151. Let f is a completary staroid such that (form f); is a boolean lattice for each
i€arity f. Let a€ [] f Form i Then

Strd
11 f restrdtormd) TT a= StarComp( 1 f; M € dom 2 15f°<9‘i>).

i Earity

Proof. Using the theorem [140. O

Theorem 152. Let f is a staroid such that (form f); is a boolean lattice for each i € arity f. Let
@€ Ticuney y 3™ Then 11 f £FPGm D) 155 g q ey /.

Proof. 1] f #FcPlermf) HStrd a < ] f NFEPform f) HStrd at0& StarComp(TTf; i € arity f:
IECPE ) £ PP 1) o 3L € 157,y € GRTS N [, atoms i € miy | 1P| Ly 3L € T™,

a;

ye€GRTTfN Hie" atoms A;Vien: (y; Ca; ANy, E L)<y e GRTFN Hie" atoms 21;Vi € n:
yiCaie GRITfN [],., atomsa; # 0= ac f. O

Corollary 153. Let f is a completary staroid such that (form f); is a boolean lattice for each
i€carity f. Let ae Hiearityf Fform i Then ”f*cStrd(form 1) HStrd asactf.
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Proof. Using the fact that ] f mpStrd(form f) HStrd a= StarComp(TTf; Ai € dom A: I:;CD(%)) isa
completary staroid (theorem 140). O

Theorem 154. [[°" a#pStd [ po [1%7 0 £S™ [[P b be [[Pasac [ bsakbd
for every indexed families a and b of filters on boolean algebras.

Proof. By corollary 66 we have HStrd b=11f for some f. Thus as our filtrator is with separable

core we can apply the theorem 152 and its corollary. So [ a %5 [1°" b ae [[°7 b and

HStrd a %eStrd HStrd bsac HStrd b. Similarly HStrd a %cStrd HStrd bebe HStrd a. This by the
definition of staroidal product is equivalent to a % b. We are done. 0

13 Multireloids

Definition 155. I will call a multireloid of the form A= A;c,,, where every each A; is a set, a pair
(f; A) where f is a filter on the set [ A.

Definition 156. I will denote Obj(f; A)=A and GR(f; A) = f for every multireloid (f; A).

I will denote RLD(A) the set of multireloids of the form A.
The multireloid tR'PAE for a binary relation F is defined by the formulas:

ObjtRPAF =4 and GRRPAWE =4IIAGR F.

Let a is a multireloid of the form A and dom A =n.

Let every f; is a reloid with Src f; = A;.

The star-composition of a with f is a multireloid of the form A\i € dom A: Src f; defined by the
formulas:

arity StarComp(a; f) =n;
GR StarComp(a; f) = |_| {TRLD(A)StarComp(A;F) | VA€a, Fe H fl};

1€EN

Obj,, StarComp(a; f) = Ai € n: Dst f;.

Theorem 157. Multireloids with above defined compositions form a quasi-invertible category
with star-morphisms.
Proof. We need to prove:

1. StarComp(StarComp(m; f); g) = StarComp(m; Ai € arity m: g; o fi);

2. StarComp(m; \i € arity m: idow,, i) =m;

3. b StarComp(a; f) < a* StarComp(b; f7)

(the rest is obvious).
Really,

1. StarComp(StarComp(4; f); g) = [] {TRLD(A)StarComp(B; G) | VB € StarComp(4; f),
Ge [licn 9} =TI {#R-P(ADStarComp(StarComp(4; F); G) | VA € a, F € [Lic, fis
Ge [licn gy =T1 {TRLD(A)StarComp(A; GolF)|VA€a,Fe [],., fiGE Il;cn g} =
[ {TRLD(A)StarCOmp(A;H) | VA€a,HE [[,c, Mi€n:gio fi} =StarComp(a; Xi € n: g;o f;)
(used properties of generalized filter bases) [TODO: More detailed proof.]

2. StarComp(m; i € arity m: idopj, ;) = [] {1RPWStarComp(4; idx) | VA € m, X €
Uicn PO0bjmi} =[] {1RPWA | VAca}=m.

3. Using properties of generalized filter bases,
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bk StarComp(a; f) & VA€a,Be B, F e [],., fi: B*StarComp(A; F) < VA€a, BEDB,
Fe Il [ B# < 1< F>A@VA€@,B€B,F€ e, fi A% <( 1< F)*1>B@
VAe€a,BeB,F e [],., fi A% StarComp(B; F'') & a3 StarComp(b; f7). O

Definition 158. Let f is a multireloid of the form A. Then for i € dom A
PrRP f =[] (149 (Pr) £

Definition 159. [[F° x =[] {tRP(i€dom X:Base(X) T X | X € X} for every indexed family
X of filters on powersets.

RLD HRLD

Proposition 160. Prj x =z}, for every indexed family x of proper filters.

Proof. It follows from (Pry ){TRLD(/\iedomX:Base(Xi))H X|Xezp=[]{X|Xeaz}=uz. O

Conjecture 161. GR StarComp(a; \i € n: f;U g;) = GR StarComp(a; f) U GR StarComp(a; g) for
a multireloid a and indexed families f and g of multireloids where Src f;=Src g; and Dst f; =Dst g;.

Conjecture 162. GR StarComp(a U b; f) = GR StarComp(a; f) U GR StarComp(b; f) if f is a
reloid and a, b are multireloids of the same form, composable with f.

Theorem 163. HRLD A=[]{ HRLD ala€ [];caoma atoms A;} for every indexed family A of
filters on powersets.

Proof. Obviously [P 430 || { 1" alac IT;caom 4 atoms A;}.
Reversely, let K € | | { [I"Palac IT;caom 4 atoms A;}. Then for every i € dom A we have
K e J[™P g, for every a, € IT,caom 4 atoms A; and so K 3 [] X, for some Xi € [[;yoma 4s-

Consequently K I | |;cqoma IT Xi= Licaoma Iljcdoma Xii = Il cdoma Uicdoma Xii 2
[1;cdom a Zj for some Z; € Aj. So K € T1°° A O

Theorem 164. Let a, b be indexed families of filters on powersets of the same form 2. Then

RLD RLD RLD
Hal‘IHbz H (a;Mb;).
i€dom 2

Proof.
RLD RLD

H all H b

RLD RLD
{TRLD(Ql)(PﬁQ) | Pe H a,Q € H b}
{TRLD(Ql)(Hpﬁ H q) | pe H a,q¢e H b} -

TRLD(QL)( H (pmqi)> | pe H a,qe H b

i€dom 2
{TRLD(QUHTM"G 1T (ail_lbi)} =
i€dom 2
RLD
H (G,Z|_|bz>
i€edom 2

Theorem 165. If S€ &[], 4. o S(2;) where 2 is an indexed family of sets, then

[] {RﬁD al aES}: FﬁD [ (45 5.

i€dom
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Proof. Special case when S is empty is obvious. Let S # .
[ <T3(mi)>PriS CT] <Tg(%)>{ai} =a; for every a € S because a; € Pr; S. Thus
HRLD <T3(mi)>PriS C HRLD a:

i€edom 2
RLD RLD
H{H a|a€S}Q H |_|<T3(Q“)>Pri5.

i€dom A
Now suppose F € H?é(?omm [l <T3(%’)>PriS. Then there exist X € ()\i €dom2: [] <T3(mi)>PriS)
such that F'D [] X. It is enough to prove that there exist a € S such that F' € HRLD a. For this
it is enough [] X € [[°° a.
Really, X; €[] <Tg(%’)>PriS thus X; € a; for every a € S because Pr; S D {a;}.
Thus [] X € HRLD a. O

Definition 166. I call a multireloid convez iff it is a join of reloidal products.

Conjecture 167. f C HRLD a < Vi € arity f: PrR'® f C q; for every multireloid f and

a; € §((form f);) for every i € arity f.

14 Subatomic product of funcoids
Lemma 168. [] (1)(Pr; Ya= (Pr;)a for every multireloid a and i € arity a.

Proof. []14(Pr;)a D (Pr;)a is obvious.

(Pr; )a is a filter base. Really, let P, @ € (Pr; Ja. Then P =dom Xy, @ = dom X; where X,
X1 €a. Then PN Q=dom XyNdom X; Ddom(XyNX;) € (Pr; )a.

Let K € [] (")(Pr; Ya. Then by properties of generalized filter bases there exists X € a such
that K O (1) (Pr; )X that is K € Pr; X and consequently K € (Pr; )a. O

Definition 169. Let f is an indexed family of funcoids. Then H(A) f (subatomic product) is

a funcoid Hiedomf Src f; — HiGdomf Dst f; such that for every a € atoms 1REP(Ai€dom f:Sre fi)

b € atoms 1RLD(/\i€dom f:Dst fi)

(4)
alH f]b@Viedomf;Pria[fi]Prib.

Proposition 170. The funcoid H(A) f exists.

Proof. To prove that H(A) f exists we need to prove (for every a € atoms 1REP(Ai€dom fiSre fi)

b € atoms 1RLD(/\i€dom f:Dst f.b))

VX €a,Y € b3z € atoms FREPAi€dom fiSre fi) X ) atomg HRLP(Ai€dom f:Dst fi)y, o,

(A)
a H f
Let VX €a,Y € bdx € atoms TRLD(’\iEd"m [:Sre fi)X, y € atoms TRLD(’\iEdom f:Dst fi)y . 4 [ H(A) f} V.
Then

VX € a,Y € b3z € atoms tREP(iEdom fiSre fi) -y e gtoms FREP(Ai€dom £:Dst f)yy; ¢ dom f:
Pr;z [fi] Priy.

(4)
[rlv=

b.

Then because Pr; x € atoms Tsrc fiPr; X and likewise for y:
Then VX €a,Y €bVi € dom f3x € atoms 157 fiPr; X | y € atoms 1P fiPr,; Yz [ f,] v.
Thus VX €a,Y €bVi € dom f: 15 fiPr; X [f;] 1P fiPr, Y
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VX €a,Y €bViedom f:Pr; X [fi]* Pr; Y.

Then VX € (Pr; )a,Y € (Pr; )b: X [fi]*Y.

Thus by the lemma VX € [ (157 /) (Pr; )a, Y € [] (1P /i) (Pr; )o: X [f,]* Y.

VX €Pr;a,Y €Pr;b: X [fz]*y

Thus Pr;a[f;] Pr;b. So Vi € dom f:Pr;a[f;]| Pr;b and thus a| f x (4) g]b. O

Remark 171. It seems that the proof of the above theorem can be simplified using cross-compo-
sition product.

Theorem 172. HE’:L (gio fi) = H(A) go H(A) f for indexed (by an index set n) families f and

g of funcoids such that Vi € n: Dst f; = Src g;.

Proof. Let a, b are ultrafilters on [] Src f; and ] Dst g; correspondingly,

€N iEN

(4) & £

a [H (gio fz)] b< Vi € dom f: Pr; a [giof;] Pr; b & Vi € dom f3C € antomsgnienD fl:
1EN

(Pr;a[fi] C AC [gi] Pr;ib) < Vi e dom f3c € atomsR-PAEMDSE ). (Pr, o [ f;] Pryc A Pr;c[gi] Prib) <

Je € atomsREPXNEmDS Ay « dom f: (Pr; a [fi] Pri ¢ A Pr;c[gi] Pr;b) < 3¢ € atomsR-PAi€n:Dst f),

Tt o)) 11

Vi € dom f3c € atomsRLPNEnDSt ). (Pr, o [ £i] Pr; ¢ A Pr; ¢ [gi] Pr; b).
Then there exists ¢’ € atomsR-PAEnDst f) guch that
Vi € dom f: (Pr;a[fi] Pr;c; APr;c}[gi] Pr;b).
Then take ¢’ = []""° ¢/. Then Vi € dom f: (Pr; a[f)] Pr;c/ APr; ¢/ [g;] Pr;b). Thus
Je € atomsR-PNEDS i e dom f: (Prya[f;] Pric A Pric[gy Prib).

We havea{ e (giofi)}b(:)a[H(A) g0 TI £1b. 0

Proposition 173. HRLD a [ H(A) f} HRLD b<Viedom f:a;[fi]b; for an indexed family f of
funcoids and indexed families a abd b of filters where a; € §(Src f), b; € F(Dst f) for every i € dom f.

Proof. [["°a [ H(A) f} [17° b 3z € atoms [[R° a, y € atoms [[R° b: 2 [ H(A) f} Y

Jx € atoms HRLD a, y € atoms HRLD bvi € dom f: Pr; x [f;] Pr; y & Jx € atoms HRLD a,
y € atoms HRLD bVi € dom f:a; [fi] bi< Vi e dom f:a;|[fi] b;. O

15 On products and projections

Conjecture 174. For discrete funcoids H(C) and H(A) coincide with the conventional product
of binary relations.

15.1 Staroidal product

Let f is a staroid components of whose form are boolean lattices.

Definition 175. Staroidal projection of a staroid

Prit f = (f)( i € (arity f)\ {k}: 10rm Do),



ON PRODUCTS AND PROJECTIONS 29

Proposition 176. Pry GR HStrd T =*Ty.
Proof. Pri GR [[>" 2 =Pr; {LcU%m® | Vi cdoma: 2, L} =27 = {l | a1} = *xy. 0
Proposition 177. Prgt HStrd x =y if x is an indexed family of proper filters, and k € dom x.

Proof. Pryt HStrd z=( HStrd z),(Xi € (domz)\ {k}: 1(f°rmz)i).

Thus 9 Prytr HStrd z = (val HStrd z),(Ai € (dom z) \ {k}: (orma)iy — X ¢
(form [T ), | (Xi€ (doma)\ {k}: 102 U {(k; X)} € GR [[*" 2} = {X € Basexy, | (Vie
(domz) \ {k}: 1(f°rmx)i7ﬁzi) /\X;Exk} ={X €Basex | X #(ar}=0x.

Consequently Prgtr HStrd T =T O

15.2 Cross-composition product of pointfree funcoids

Zero morphisms of the category of pointfree funcoids are 77.

Proposition 178. Values x; (for every i € dom x) can be restored from the value of H(C) x
provided that z is an indexed family of non-zero pointfree funcoids if Src f; (for every i €n) is an
atomic lattice and every Dst f; has greatest element.

Proof. < 1< x> 15" p=T1°° (2:)p; by the theorem 145.

1EN
Since x; # 0 there exist p such that (x;)p; # 0. Take k € n, p; = p; for i #+ k and p; = ¢ for an
arbitrary value ¢; then (using the staroidal projections from the previous subsection)

FCD (@) Strd

—P Strd Np! =P Strd 1

(wr)g=Pr™ T] (za)pi=Pr™( [] =) 11 »"
iEN

So the value of = can be restored from H(C) 2 by this formula. O

15.3 Subatomic product

Proposition 179. Values x; (for every i € dom x) can be restored from the value of H(A) x
provided that x is an indexed family of non-zero funcoids.

Proof. Fix k € dom f. Let for some filters = and y

o 13 (Base()) lfz%k’ and b 18 (Base(y)) anék7
x ifi=k Y ifi=k.

Then ay, [24] by < Vi € dom [ a; [z bi <= [[F-° a[ H(A) x} 17 b. So we have restored j, from
H(A) x. O

Conjecture 180. For every funcoid f: [[ A— [] B (where A and B are indexed families of sets)
there exists a funcoid PréA) f defined by the formula

RLD RLD
T (Base()) ifi£k: 13"(Base(y)) if 7& k:
pri 1 ifi£k; if i+ k;
x[ T f}y” 11 <{ . iz UL y if i = k.

1. every filters z and y;

for:

2. every principal filters x and y;

3. every atomic filters z and y.
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15.4 Other

Conjecture 181. Values ; (for every i € domx) can be restored from the value of [] ©) » provided
that z is an indexed family of non-zero reloids.

Conjecture 182. Values z; (for every i € dom z) can be restored from the value of H(DP) x
provided that x is an indexed family of non-zero funcoids.
Definition 183. Let f € f@(ZUY) where Z is a set and Y is a function.

PrECD) f=Prp{curryz | z€ f}.
Proposition 184. Pr,(CD) H(D) F = F}, for every indexed family F' of non-empty relations.
Proof. Obvious. O

Corollary 185. GR Pr H(D) F =GR F}, and form Pr D) H(D) F =form F}, for every indexed
family F of non-empty anchored relations.

16 Coordinate-wise continuity

Theorem 186. Let p and v are indexed (by some index set n) families of endo-morphisms for a
partially ordered dagger category with star-morphisms, and f; € Hom(Ob pu;; Oby;) for every i €n.
Then:

1. Vien: fie Clusv) = @ fec( 19 w 1@ y);
2. Vien: f;eCl(psvy) = ¢ feC’( 19 w 1@ y);
3. Vien: fieC(uzv) = 119 rec( 119 w 11 v).
Proof. Using the corollary 129:
1.Vien: fi € Clusv) & Vien: fiou Cyo fi= HZGn (fiou) E Hzen (vio fi) &

(H(C) f)o( ER u)_(H(C) V)O( ER f) 1< fec( 19 w 1@ V),

2. Vien: fie€C'(uiv) eVien: ;i C flovio fi= H(C) uwC H(.C) (f.Toz/-of) H(C uC
(T ) (T v ) (M0, ) & T ne (T, 1) o (TG, w) o (110 1)
I fGC’( 1w 1< V)~

3. Vien: f; € C'uivy) & Vi€n: fiopo fiCu= HEZL (fiomio fl)C Hg
[1) fie T, e T1E, A € T1E, e TIE, fio T, mee (T1IE) 1) '€ HESL Vi
1<) fiECN( ' w 1< V)~ O

Theorem 187. Let p and v are indexed (by some index set n) families of endo-funcoids, and
fi € FCD(Ob p;; Obv;) for every i € n. Then:

1. Vien: fie Clusvi) = [ fec(H<A> w T4 y);
2 Vien: fieClusw) = [ fec/( I w I v);
3. Vien: f;eC"(p;vi)= H(A) fEC”( H(A) 78 H(A) 1/).

Proof. Similar to the previous theorem. O
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17 Counter-examples
Example 188. 17| f # f for some staroid f whose form is a family of filters on a set.

Proof. Let GR f={A€F(U) | 19Cor A A} for some infinite set U where A is some non-principal
f.o. on U.

AUBEGR f<19Cor(AUB)# A <18Cor AU1PCor B# A < (Cor ALICor B)MA #0510 &
19Cor ANA £ 050) v 4Base(B)Cor BNA£05®) o Ae fVBef.

Obviously 07(©) ¢ GR f. So f is a free star. But free stars ere essentially the same as 1-staroids.

GRI|lf=0A. GRITlf=xA#f. O

For the below counter-examples we will define a staroid ¢ with arityJ =N and GR9 € Z(NY)
(based on a suggestion by Andreas Blass):

AeGRVY&supcard(A4;Ni)=NAVie N: A; £ 0.

ieN
Proposition 189. ¢ is a staroid.

Proof. (vald),L = 2N\ {0} for every L € (QIN)N\{” if Vi € N: L; # (. Otherwise (vald);L = 0.
Thus (val9),;L is a free star. So ¢ is a staroid. O

Proposition 190. ¢ is a completary staroid.

Proof. Aj Ll A; € GRJ < Ay U A; € GR ¥ & sup;en card((Api U A1i) Ni) = N A Vi € N:
Aoi U Al’L 7£ @ & Sup;eN card((Aoz' n ’L) U (Al’L N ’L)) =NAVieN: A()Z U All 7£ @

If Agi =0 then AgiNi=10 and thus A;5Ni3J Api Ni. Thus we can select ¢(i) =1 in such a way
that Vd € {0, 1}: card(A.;) Ni) D card(AgNi) and A;yi # 0. (Consider the case Agi, Ayi# () and
the similar cases Agi =0 and A;i=10.)

So AgU A € f&supien card(Ac(i)z' N Z) =NA Ac(i)i 75 IR=S ()\i en: Ac(i)i) €.

Thus ¥ is completary. O

Obvious 191. ¢ is non-zero.

Example 192. For every family a =a;cn of atomic f.o. ] a is not an atom nor of the poset of
staroids neither of the poset of completary staroids of the form Ai € N: Base(a;).

Proof. It’s enough to prove ¢ 2 [] a.
Let tNR; =a; is a; is principal and R; =N\ i if a; is non-principal.
We have Vi€ N: R; € a;.
We have R ¢ 9 because sup;en card(R;Ni)=0.
R e [] a because VX €a;: X N R; # 0.
So ¥ 2] a. O

Remark 193. At http://mathoverflow.net/questions/60925/special-infinitary-relations-and-
ultrafilters there are a proof for arbitary infinite form, not just for N.

Conjecture 194. There exists a non-completary staroid.

Conjecture 195. There exists a pre-staroid which is not a staroid.

Conjecture 196. The set of staroids of the form AZ where A and B are sets is atomic.
Conjecture 197. The set of staroids of the form AP where A and B are sets is atomistic.
Conjecture 198. The set of completary staroids of the form A® where A and B are sets is atomic.

Conjecture 199. The set of completary staroids of the form AP where A and B are sets is
atomistic.
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18 Conjectures

Remark 200. Below I present special cases of possible theorems. The theorems may be generalized
after the below special cases are proved.

Conjecture 201. For every two a. funcoids; b. of reloids f and g we have:

1. (RLD)a [ f xPP) g] (RLD)imb < a [ f x(©) g] b for every funcoids a € FCD(Sre f; Sre g),
b€ FCD(Dst f; Dst g);

2. (RLD)oysa [ f xPP) g] (RLD)outb < a [ f x(©) g] b for every funcoids a € FCD(Src f; Sre g),
b€ FCD(Dst f; Dst g);

3. (FCD)a [f x(@ g] (FCD)b < a [f x(PP)g] b for every reloids a € RLD(Src f; Sre g),
b€ RLD(Dst f; Dst g).

Definition 202. A staroid on power sets is such a staroid f that every (form f); is a lattice of all
subsets of some set.

Conjecture 203. [[°™ a [[*™ bebe [[7™ asac [[°7 be a#b for every indexed families
a and b of filters on powersets of some sets.

Conjecture 204. Let f is a staroid on powersets and a € Hiearityf Src f;, be Hiearityf Dst f;.
Then

Strd () Strd
H a[H f] H b< Vi€ n:a;[fi] bi

Proposition 205. The conjecture is a consequence of the conjecture 177.

Proof. Applying the definition of staroidal product and the theorem 177 we get:

Strd Strd Strd
H a* H b< (theorem I77)<b e H a< akb.
Similarly [[°™ a% [[*™ bsac [[7™ 0. O

Proposition 206. The conjecture is a consequence of the conjecture 203.
Proof. HStrd a[ H(C) f} HStrd N HStrd b < 1—[(C) f> HStrd PN HStrd bt Hf;'i (fi)ai s

Conjecture 207. For every indexed families a and b of filters and an indexed family f of pointfree
funcoids we have

Strd (©) Strd RLD (DP) RLD
el IL7 I T1o= 11 «| 1T £| I1 ¢
Conjecture 208. Displaced product of funcoids is a quasi-cartesian functions. (Counsider also a
similar conjecture for reloids.)
Strenghtening of an above result:

Conjecture 209. If a is a completary staroid and Dst f; is a starrish poset for every i € n then
StarComp(a; f) is a completary staroid.

Strenghtenings of above results:

Conjecture 210.

1. H(D) F' is a pre-staroid if every Fj is a pre-staroid.
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2. H(D) F' is a completary staroid if every F; is a completary staroid.

Conjecture 211. If f; and f5 are funcoids, then there exists a pointfree funcoid f; x f2 such that

(fix fa)z= |_| {{f)X xFP(f2) X | X € atomsz}

for every ultrafilter x.

18.1 Informal questions

Are the above defined products categorical direct products for some category?

Do products of funcoids and reloids coincide with Tychonov topology?

Limit and generalized limit for multiple arguments.

Is product of connected spaces connected?

Product of Ty-separable is Ty, of T3 is 117

Relationships between multireloids and staroids.

Generalize the section “Specifying funcoids by functions or relations on atomic filter objects”
from [3].

Generalize “Relationships between funcoids and reloids” in [I].
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