1 Hyperfuncoids

Let A is an indexed family of sets. Products are Q_A for $A \in \prod A$.

Problem 1. Is \prod^FCD a bijection from hyperfuncoids $\exists \Gamma$ to:
1. prestaroids on A;
2. staroids on A;
3. completary staroids on A?

If yes, is \up^Γ defining the inverse bijection? If not, characterize the image of the function \prod^FCD defined on $\exists \Gamma$.

Alternatively (differently for the infinite dimensional case!) define Γ as the set of intersections of sets with holes that is $\prod A \setminus \prod A$ where $A \subseteq A$. In other words, it is the set Γ^* of complements of elements of the set Γ.

Theorem 2. For every anchored relation f on powersets, $f = \prod^\operatorname{Anch}(A) \up^\Gamma^* f$.

Proof. We need to prove only $f \subseteq \prod^\operatorname{Anch}(A) \up^\Gamma^* f$.

Fix $n \in \operatorname{arity} A$. Let $A \in \prod_{(\operatorname{arity} f) \setminus \{n\}} A_i$.

[TODO: Define the complement.]

Define $g(A) = \left(\prod_{(\operatorname{arity} f) \setminus \{n\}} A_i \times (f)_n A \right) \cup \left(\prod_{(\operatorname{arity} f) \setminus \{n\}} A_i \times 1 \right)$ for $A \in \prod_{(\operatorname{arity} f) \setminus \{n\}} A_i$.

Obviously $g(A) \in \Gamma^*$.

Let $X \in \prod_{(\operatorname{arity} f) \setminus \{n\}} A_i$.

If $0 \neq X \subseteq A$ then $(g(A))_n X = (f)_n A \supseteq (f)_n X$.

If $X \not\subseteq A$ then $(g(A))_n X = 1$.

So $(g(A))_n \supseteq (f)_n$ and thus $g(A) \supseteq f$.

For a given f, we have $(g(A))_n A = (f)_n A$. Thus for every $A \in \prod_{(\operatorname{arity} f) \setminus \{n\}} A_i$ we have $(f)_n A \subseteq \left(\prod^\operatorname{Strd}(A) \up^\Gamma^* f \right)_n A$ and so $f \subseteq \prod^\operatorname{Anch}(A) \up^\Gamma^* f$. \square

Corollary 3.

1. If f is a prestaroid, $f = \prod^\operatorname{pStrd}(A) \up^\Gamma^* f$.
2. If f is a staroid, $f = \prod^\operatorname{Strd}(A) \up^\Gamma^* f$.
3. If f is a completary staroid, $f = \prod^\operatorname{cStrd}(A) \up^\Gamma^* f$.