
Generalizations in Isabelle/ZF

Victor Porton

December 24, 2010

Contents

1 Link to informal document 1

2 Some addons to Isabelle/ZF 1

3 A theory of generalization 3
3.1 Generalization situation . 3
3.2 Arbitrary generalizations . 4
3.3 ZF generalization . 5

4 An example of generalization 9

1 Link to informal document

This Isabelle/ZF theory is based on the ideas of article “Generalization in
ZF”.

2 Some addons to Isabelle/ZF

theory ZF-Addons
imports Main-ZF

begin

We need to add some additional lemmas to Isabelle/ZF before proceed.

lemma inj-inj-range: f ∈inj (A,B) =⇒ f ∈inj (A,range(f))
apply (unfold inj-def)
apply (auto simp add : Pi-iff function-def)

done

lemma inj-bij-range: f ∈inj (A,B) =⇒ f ∈bij (A,range(f))
apply (auto simp add : bij-def inj-inj-range)
apply (blast intro: inj-is-fun fun-is-surj elim:)

1

http://www.mathematics21.org/binaries/gen/generalization.pdf
http://www.mathematics21.org/binaries/gen/generalization.pdf

done

lemma range-subset : f : A→B =⇒ range(f) ⊆ B
proof −

assume f : A→B
hence f ∈Pow(A×B) by (simp add : Pi-def)
hence f ⊆ A×B by auto
moreover
hence range(A×B) ⊆ B by auto
ultimately show range(f) ⊆ B by auto

qed

lemma lam-is-fun: f = (lam x :d . b(x)) =⇒ f : d→range(f)
proof −

assume eq : f = (lam x :d . b(x))
have dom: domain(f) = d using domain-lam by (auto simp add : eq)
with eq have function(f) using function-lam by auto
moreover
with eq have relation(f) using relation-lam by auto
ultimately have f : domain(f)→range(f) by (rule function-imp-Pi)
with dom show ?thesis by auto

qed

lemma comp-fun2 :
[[g : A→B1 ; f : B0→C ; B1⊆B0]] =⇒ (f O g) : A→C

proof −
assume g : A→B1 f : B0→C B1⊆B0
with 〈g : A→B1 〉 have g : A→B0 by auto (rule fun-weaken-type)
from 〈g : A→B0 〉 〈f : B0→C 〉 show (f O g) : A→C using comp-fun by auto

qed

This lemma superceedes the lemma comp-eq-id-iff in Isabelle/ZF:

lemma comp-eq-id-iff1 :
[[g : B→A; f : A→C]] =⇒ (∀ y∈B . f‘ (g‘y) = y) ←→ f O g = id(B)

proof −
assume g : B→A f : A→C
hence f O g : B→C by (rule comp-fun)
moreover
have id(B): B→B by (rule id-type)
ultimately have m: (∀ y∈B . (f O g)‘y = id(B)‘y) ←→ f O g = id(B) by (rule

fun-extension-iff)
from 〈g : B→A〉 have c [simp]: ∀ y∈B . (f O g)‘y = f‘ (g‘y) by auto
have i [simp]: ∀ y∈B . id(B)‘y = y by auto
from m show (∀ y∈B . f‘ (g‘y) = y) ←→ f O g = id(B) by simp

qed

lemma right-comp-id-any : r O id(C) = restrict(r ,C)
unfolding restrict-def by auto

2

end

3 A theory of generalization

theory Generalization
imports Main-ZF ZF-Addons

begin

This theory formalizes the intuitive notion of generalization.

3.1 Generalization situation

locale generalization-situation =
fixes small ::i and big ::i
fixes embed ::i
assumes embed-inj : embed∈inj (small , big)

begin

In Isabelle 2009-2 locale params are not visible. As a workaround I define
their abbreviations:

abbreviation small-param ≡ small
abbreviation big-param ≡ big
abbreviation embed-param ≡ embed

definition small2-def : small2 ≡ range(embed)
definition spec-def : spec ≡ converse(embed)

lemma spec-inj : spec∈inj (small2 , small)
proof −
from embed-inj have converse(embed)∈inj (range(embed), small) by (rule inj-converse-inj)
with small2-def spec-def show ?thesis by simp

qed

lemma spec-fun: spec: small2→small
proof −
from embed-inj have converse(embed): range(embed)→small by (rule inj-converse-fun)
with small2-def spec-def show ?thesis by simp

qed

lemma embed-fun: embed : small→big by (rule inj-is-fun[OF embed-inj])

lemma embed-surj : embed∈surj (small , small2)
proof −

have embed∈surj (small , range(embed)) by (rule fun-is-surj [OF embed-fun])
hence ?thesis embed∈surj (small , small2) by (unfold small2-def)
show ?thesis by fact

qed

3

theorem embed-bij : embed∈bij (small , small2)
proof −

from embed-inj have embed∈bij (small , range(embed)) using inj-bij-range by
auto

thus ?thesis by (unfold small2-def)
qed

theorem small2-sub-big : small2⊆big using embed-fun range-subset by (auto simp
add : small2-def)

theorem spec-bij : spec∈bij (small2 , small)
proof −
have converse(embed)∈bij (small2 , small) by (rule bij-converse-bij [OF embed-bij])
thus ?thesis by (unfold spec-def)

qed

end

3.2 Arbitrary generalizations

locale arbitrary-generalization = generalization-situation +
fixes newbig ::i
fixes move::i
assumes
move-bij : move∈bij (big , newbig) and
move-embed : move O embed = id(small)

begin

In Isabelle 2009-2 locale params are not visible. As a workaround I define
their abbreviations:

abbreviation newbig-param ≡ newbig
abbreviation move-param ≡ move

lemma move-fun: move: big→newbig using move-bij bij-is-fun by auto

lemma move-inj : move∈inj (big , newbig) using move-bij by (rule bij-is-inj)
lemma move-surj : move∈surj (big , newbig) using move-bij by (rule bij-is-surj)

lemma move-domain: domain(move) = big using domain-of-fun [OF move-fun]
by auto

theorem move-embed-plain [simp]: x∈small =⇒ move‘ (embed‘x) = x
proof −

assume x : small
with embed-fun have move‘ (embed‘x) = (move O embed)‘x using comp-fun-apply

by auto
also have ... = id(small)‘x by (simp add : move-embed)
also with 〈x∈small 〉 have id(small)‘x = x by simp
finally show move‘ (embed‘x) = x by simp

4

qed

definition ret-def : ret ≡ converse(move)

lemma ret-bij : ret∈bij (newbig , big) using move-bij unfolding ret-def by auto

lemma ret-inj : ret∈inj (newbig , big) using ret-bij by (rule bij-is-inj)
lemma ret-surj : ret∈surj (newbig , big) using ret-bij by (rule bij-is-surj)

lemma ret-restrict : embed = restrict(ret , small)
proof −

have converse(move) O move O embed = converse(move) O id(small) using
move-embed by auto
hence (converse(move) O move) O embed = converse(move) O id(small) using

comp-assoc by auto
moreover
with left-comp-inverse move-inj have i [simp]: converse(move) O move = id(big)

by simp
ultimately have a: id(big) O embed = converse(move) O id(small) by simp
with embed-fun have embed⊆small×big using fun-is-rel by auto
hence id(big) O embed = embed using left-comp-id by auto
with a have embed = converse(move) O id(small) by auto
hence embed = restrict(converse(move), small) using right-comp-id-any by

auto
thus embed = restrict(ret , small) using right-comp-id-any unfolding ret-def

by auto
qed

end

3.3 ZF generalization

We will need this lemma to assert that ZF generalization is an arbitrary
generalization:

lemma mem-not-refl-2 : {t}/∈t
proof

assume as: {t}∈t
let ?A = {t ,{t}}
have nz : ?A 6= 0 by auto
have ∀ x∈?A. ∃ y∈x . y∈?A
proof

fix x assume x∈?A
have x-in-A: x∈?A by fact
have ex : ∃ y∈x . y∈?A
proof cases

assume x=t
with as have {t}∈x ∧ {t}∈?A by auto
thus ?thesis by auto

next

5

assume x 6=t
with x-in-A have x={t} by auto
with as have t∈x ∧ t∈?A by auto
thus ?thesis by auto

qed
thus ∃ y∈x . y∈?A by auto

qed
with foundation show False by auto

qed

locale ZF-generalization = generalization-situation
begin

definition token-def : token ≡ Pow(
⋃

(
⋃

(small)))

lemma token-not-small : 〈token,x 〉/∈small
proof

assume 〈token,x 〉∈small
hence {{token,token}, {token,x}}∈small by (simp add : Pair-def)
hence {{token}, {token,x}}∈small by auto
hence {token}∈

⋃
(small) by auto

hence {token} ⊆
⋃

(
⋃

(small)) by auto
hence {token}∈Pow(

⋃
(
⋃

(small))) by auto
hence {token}∈token by (simp add : token-def)
with mem-not-refl-2 show False by contradiction

qed

definition zf-move-fun::i⇒i where zf-move-fun-def : zf-move-fun(x) ≡ if x : small2
then spec‘x else 〈token,x 〉
definition zf-move-def : zf-move ≡ (lam x :big . zf-move-fun(x))

definition zf-newbig-def : zf-newbig ≡ range(zf-move)

lemma zf-move-domain: domain(zf-move) = big using domain-lam by (auto simp
add : zf-move-def)

lemma zf-move-fun: zf-move: big→zf-newbig by (simp add : lam-is-fun zf-move-def
zf-newbig-def)

theorem small-less-zf-newbig : small ⊆ zf-newbig
proof

fix x
assume s: x∈small
with embed-fun have embed‘x∈range(embed) by (rule apply-rangeI)
hence s1 : embed‘x∈small2 by (unfold small2-def)
with small2-sub-big have s2 : embed‘x∈big by auto
hence zf-move‘ (embed‘x) = zf-move-fun(embed‘x) by (auto simp add : zf-move-def)
with s1 have zf-move‘ (embed‘x) = spec‘ (embed‘x) by (simp add : zf-move-fun-def)
with embed-inj s spec-def have x-val : zf-move‘ (embed‘x) = x using left-inverse

6

by auto
from zf-move-fun s2 have zf-move‘ (embed‘x)∈range(zf-move) by (rule apply-rangeI)
with x-val have x∈range(zf-move) by auto
with x-val zf-newbig-def show x∈zf-newbig by auto

qed

theorem zf-move-inj : zf-move∈inj (big , zf-newbig)
proof −

have ∀ a∈big . ∀ b∈big . zf-move‘a = zf-move‘b −→ a=b
proof −
{

fix a b
assume a∈big b∈big
assume move-eq : zf-move‘a = zf-move‘b
have spec1-a: a:small2 =⇒ zf-move‘a = spec‘a
proof −

assume a∈small2
with 〈a∈big〉 show ?thesis by (simp add : zf-move-def zf-move-fun-def)

qed
have spec1-b: b∈small2 =⇒ zf-move‘b = spec‘b
proof −

assume b∈small2
with 〈b∈big〉 show ?thesis by (simp add : zf-move-def zf-move-fun-def)

qed
have spec2-a: a /∈small2 =⇒ zf-move‘a = 〈token,a〉
proof −

assume a /∈small2
with 〈a∈big〉 show ?thesis by (simp add : zf-move-def zf-move-fun-def)

qed
have spec2-b: b /∈small2 =⇒ zf-move‘b = 〈token,b〉
proof −

assume b /∈small2
with 〈b∈big〉 show ?thesis by (simp add : zf-move-def zf-move-fun-def)

qed
have a=b
proof −
{ assume a∈small2 b∈small2

from 〈a∈small2 〉 have zf-move‘a = spec‘a by (rule spec1-a)
moreover
from 〈b∈small2 〉 have zf-move‘b = spec‘b by (rule spec1-b)
ultimately
have spec‘a = spec‘b using move-eq by auto
with spec-inj 〈a:small2 〉 〈b:small2 〉 have a=b using inj-def by auto

}
moreover
{ assume a∈small2 b /∈small2

from 〈a∈small2 〉 have zf-move‘a = spec‘a by (rule spec1-a)
with spec-fun 〈a∈small2 〉 have ma-s: zf-move‘a∈small using apply-funtype

by auto

7

from 〈b /∈small2 〉 have zf-move‘b = 〈token,b〉 by (rule spec2-b)
hence zf-move‘b /∈small using token-not-small by auto
with move-eq ma-s have False by auto

}
moreover
{ assume a /∈small2 b∈small2

from 〈b∈small2 〉 have zf-move‘b = spec‘b by (rule spec1-b)
with spec-fun 〈b∈small2 〉 have mb-s: zf-move‘b∈small using apply-funtype

by auto
from 〈a /∈small2 〉 have zf-move‘a = 〈token,a〉 by (rule spec2-a)
hence zf-move‘a /∈small using token-not-small by auto
with move-eq mb-s have False by auto

}
moreover
{ assume a /∈small2 b /∈small2

from 〈a /∈small2 〉 have mt-a: zf-move‘a = 〈token,a〉 by (rule spec2-a)
moreover
from 〈b /∈small2 〉 have mt-b: zf-move‘b = 〈token,b〉 by (rule spec2-b)
from move-eq mt-a mt-b have 〈token,a〉=〈token,b〉 by auto — Order of

from conditions is important to not cause infinite loop
hence a=b by auto

}
ultimately show a=b by auto

qed
}
thus ?thesis by auto

qed
with zf-move-fun show ?thesis using inj-def by simp

qed

theorem zf-move-surj : zf-move∈surj (big , zf-newbig)
proof −

have zf-move∈surj (big , range(zf-move)) by (rule fun-is-surj [OF zf-move-fun])
hence ?thesis zf-move∈surj (big , zf-newbig) by (unfold zf-newbig-def)
show ?thesis by fact

qed

theorem zf-move-bij : zf-move∈bij (big , zf-newbig)
proof −
from zf-move-inj have zf-move∈bij (big , range(zf-move)) using inj-bij-range by

auto
thus ?thesis by (unfold zf-newbig-def)

qed

theorem zf-move-embed [simp]: x∈small =⇒ zf-move‘ (embed‘x) = x
proof −

assume x∈small
with embed-fun have embed‘x∈range(embed) by (rule apply-rangeI)
hence s1 : embed‘x∈small2 by (unfold small2-def)

8

with small2-sub-big have embed‘x∈big by auto
with s1 have zf-move‘ (embed‘x) = spec‘ (embed‘x) by (auto simp add : zf-move-def

zf-move-fun-def)
also from embed-inj 〈x∈small 〉 spec-def have spec‘ (embed‘x) = x by auto
finally show zf-move‘ (embed‘x) = x by auto

qed

theorem zf-embed-move: zf-move O embed = id(small)
proof −

have ∀ y∈small . zf-move‘ (embed‘y) = y by simp
moreover
have embed : small→big by (rule embed-fun)
moreover
have zf-move: big→zf-newbig by (rule zf-move-fun)
ultimately show ?thesis using comp-eq-id-iff1 by blast

qed

end

Next prove that ZF generalization is an arbitrary generalization:

sublocale ZF-generalization ⊆ arbitrary-generalization small big embed zf-newbig
zf-move
proof

show zf-move∈bij (big , zf-newbig) using zf-move-bij by auto
show zf-move O embed = id(small) using zf-embed-move by auto

qed

end

4 An example of generalization

theory int-obj-ex
imports Generalization

begin

In this example I show that integers can be considered as a generalization
of natural numbers.

interpretation int-interpr : ZF-generalization nat int (lam n:nat . int-of (n))
proof

show Lambda(nat , int-of)∈inj (nat , int) using int-of-inject unfolding inj-def
by auto
qed

abbreviation int-obj ≡ int-interpr .newbig-param

Naturals are a subset of integers.

lemma nat ⊆ int-obj using int-interpr .small-less-zf-newbig by auto

An example of defining an operation on the generalization set:

9

definition
add ::[i ,i]⇒i
where add(x ,y) == int-interpr .move-param‘ (int-interpr .ret‘x $+ int-interpr .ret‘y)

end

10

	Link to informal document
	Some addons to Isabelle/ZF
	A theory of generalization
	Generalization situation
	Arbitrary generalizations
	ZF generalization

	An example of generalization

