Generalizations in Isabelle/ZF

Victor Porton

December 24, 2010

Contents

1 Link to informal document 1

2 Some addons to Isabelle/ZF 1

3 A theory of generalization 3
3.1 Generalization situation 3
3.2 Arbitrary generalizations L. 4
3.3 ZF generalization 5

4 An example of generalization 9

1 Link to informal document

This Isabelle/ZF theory is based on the ideas of article “Generalization in
ZF”.

2 Some addons to Isabelle/ZF

theory ZF-Addons
imports Main-ZF
begin

We need to add some additional lemmas to Isabelle/ZF before proceed.

lemma inj-inj-range: f€inj(A,B) = fe€inj(A,range(f))
apply (unfold inj-def)
apply (auto simp add: Pi-iff function-def)

done

lemma inj-bij-range: feinj(A,B) = febij(A,range(f))
apply (auto simp add: bij-def inj-inj-range)
apply (blast intro: inj-is-fun fun-is-surj elim:)

http://www.mathematics21.org/binaries/gen/generalization.pdf
http://www.mathematics21.org/binaries/gen/generalization.pdf

done

lemma range-subset: f: A—-B = range(f) C B
proof —
assume f: A—B
hence fePow(Ax B) by (simp add: Pi-def)
hence f C AxB by auto
moreover
hence range(AxB) C B by auto
ultimately show range(f) C B by auto
qed

lemma lam-is-fun: f = (lam x:d. b(z)) = f: d—range(f)
proof —
assume eq: f = (lam z:d. b(z))
have dom: domain(f) = d using domain-lam by (auto simp add: eq)
with eq have function(f) using function-lam by auto
moreover
with eq have relation(f) using relation-lam by auto
ultimately have f: domain(f)—range(f) by (rule function-imp-Pi)
with dom show ?thesis by auto
qged

lemma comp-fun2:

[g: A=»BI1; f: BO—C; BICB0]| = (f O g) : A=C
proof —

assume ¢g: A—»BI f: B0—C B1CB0

with (g A—»B1> have g: A—B0 by auto (rule fun-weaken-type)

from «g: A—»B0) «f: BO—C) show (f O g) : A—C using comp-fun by auto
qed

This lemma superceedes the lemma comp-eq-id-iff in Isabelle/ZF":

lemma comp-eq-id-iff1:

[9: B=A; f: AnC | = (VyeB. f'(g%y) = y) +— [O g = id(B)
proof —

assume g: B—A f: A—C

hence f O g: B—C by (rule comp-fun)

moreover

have id(B): B—B by (rule id-type)

ultimately have m: (VyeB. (f O g)‘y = id(B)‘y) +— f O g = id(B) by (rule
fun-extension-iff)

from (g: B—A) have c [simp]: VyeB. (f O 9)‘y = f‘(g‘y) by auto

have i [simp]: Vy€B. id(B)‘y = y by auto

from m show (VyeB. f'(¢y) = y) «— f O g = id(B) by simp
qed

lemma right-comp-id-any: r O id(C) = restrict(r,C)
unfolding restrict-def by auto

end

3 A theory of generalization

theory Generalization
imports Main-ZF ZF-Addons
begin

This theory formalizes the intuitive notion of generalization.

3.1 Generalization situation

locale generalization-situation =

fixes small::i and big::1

fixes embed::i

assumes embed-inj: embed€inj(small, big)
begin

In Isabelle 2009-2 locale params are not visible. As a workaround I define
their abbreviations:

abbreviation small-param = small
abbreviation big-param = big
abbreviation embed-param = embed

definition small2-def: small2 = range(embed)
definition spec-def: spec = converse(embed)

lemma spec-inj: spec€ing(small2, small)

proof —
from embed-inj have converse(embed)€inj(range(embed), small) by (rule inj-converse-ing)
with small2-def spec-def show ?thesis by simp

qed

lemma spec-fun: spec: small2—small

proof —
from embed-inj have converse(embed): range(embed)— small by (rule inj-converse-fun)
with small2-def spec-def show ?thesis by simp

qed

lemma embed-fun: embed: small—big by (rule inj-is-fun|OF embed-inj))

lemma embed-surj: embed€surj(small, small2)

proof —
have embed€surj(small, range(embed)) by (rule fun-is-surj|OF embed-fun])
hence ?thesis embed € surj(small, small2) by (unfold small2-def)
show ?thesis by fact

qed

theorem embed-bij: embed€bij(small, small2)
proof —
from embed-inj have embed€bij(small, range(embed)) using ing-bij-range by
auto
thus ?thesis by (unfold small2-def)
qed

theorem small2-sub-big: small2 Cbig using embed-fun range-subset by (auto simp
add: small2-def)

theorem spec-bij: spec€bij(small2, small)

proof —
have converse(embed)€bij(small2, small) by (rule bij-converse-bij[OF embed-bij])
thus ?thesis by (unfold spec-def)

qed

end

3.2 Arbitrary generalizations

locale arbitrary-generalization = generalization-situation +
fixes newbig::i
fixes move::i
assumes
move-bij: move€bij(big, newbig) and
move-embed: move O embed = id(small)
begin

In Isabelle 2009-2 locale params are not visible. As a workaround I define
their abbreviations:

abbreviation newbig-param = newbig
abbreviation move-param = mowve

lemma move-fun: move: big—newbig using move-bij bij-is-fun by auto

lemma move-inj: move€inj(big, newbig) using move-bij by (rule bij-is-inj)
lemma move-surj: move€surj(big, newbig) using move-bij by (rule bij-is-surj)

lemma move-domain: domain(move) = big using domain-of-fun [OF move-fun]
by auto

theorem move-embed-plain [simp]: x€small = move‘(embed‘c) = x
proof —

assume z: small

with embed-fun have move‘(embed‘z) = (move O embed) ‘x using comp-fun-apply
by auto

also have ... = id(small) ‘z by (simp add: move-embed)

also with (zesmally have id(small)‘c = z by simp

finally show move‘(embed‘z) = z by simp

qed
definition ret-def: ret = converse(move)
lemma ret-bij: ret€bij(newbig, big) using move-bij unfolding ret-def by auto

lemma ret-ing: ret€inj(newbig, big) using ret-bij by (rule bij-is-inj)
lemma ret-surj: ret€surj(newbig, big) using ret-bij by (rule bij-is-sury)

lemma ret-restrict: embed = restrict(ret, small)
proof —

have converse(move) O move O embed = converse(move) O id(small) using
move-embed by auto

hence (converse(move) O move) O embed = converse(move) O id(small) using
comp-assoc by auto

moreover

with left-comp-inverse move-inj have i [simp]: converse(move) O move = id(big)
by simp

ultimately have a: id(big) O embed = converse(move) O id(small) by simp

with embed-fun have embedCsmallx big using fun-is-rel by auto

hence id(big) O embed = embed using left-comp-id by auto

with a have embed = converse(move) O id(small) by auto

hence embed = restrict(converse(move), small) using right-comp-id-any by
auto

thus embed = restrict(ret, small) using right-comp-id-any unfolding ret-def
by auto
qed

end

3.3 ZF generalization

We will need this lemma to assert that ZF generalization is an arbitrary
generalization:

lemma mem-not-refl-2: {t}¢t
proof
assume as: {t}€t
let 24 = {t,{t}}
have nz: YA # 0 by auto
have Vze?A. Jycx. ye?A
proof
fix z assume z€ %4
have z-in-A: z€?A by fact
have ex: Jycz. ye?A
proof cases
assume zr=t¢
with as have {t}cz A {t}€?A by auto
thus ?thesis by auto
next

assume zr#£t
with z-in-A have z={t} by auto
with as have tex A t€?A by auto
thus “thesis by auto
qed
thus Jycz. ye?4A by auto
qed
with foundation show Fualse by auto
qed

locale ZF-generalization = generalization-situation
begin

definition token-def: token = Pow(|J (| (small)))

lemma token-not-small: (token,z)¢small
proof
assume (token,x)€small
hence {{token,token}, {token,z}}€small by (simp add: Pair-def)
hence {{token}, {token,z}}csmall by auto
hence {token}e | (small) by auto
hence {token} C U (U (small)) by auto
hence {token}cPow(|J (I (small))) by auto
hence {token}ctoken by (simp add: token-def)
with mem-not-refl-2 show Fualse by contradiction
qged

definition zf-move-fun::i=i where zf-move-fun-def: zf-move-fun(z) = if z: small2
then spec‘z else (token,z)
definition zf-move-def: zf-move = (lam z:big. zf-move-fun(z))

definition zf-newbig-def: zf-newbig = range(zf-move)

lemma zf-move-domain: domain(zf-move) = big using domain-lam by (auto simp
add: zf-move-def)

lemma zf-move-fun: zf-move: big— zf-newbig by (simp add: lam-is-fun zf-move-def
zf-newbig-def)

theorem small-less-zf-newbig: small C zf-newbig
proof
fix z
assume s: resmall
with embed-fun have embed‘z€range(embed) by (rule apply-rangel)
hence s1: embed‘z€small2 by (unfold small2-def)
with small2-sub-big have s2: embed‘zcbig by auto
hence zf-move‘(embed‘x) = zf-move-fun(embed‘x) by (auto simp add: zf-move-def)
with s! have zf-move‘(embed ‘z) = spec‘(embed‘c) by (simp add: zf-move-fun-def)
with embed-inj s spec-def have z-val: zf-move‘(embed‘c) = x using left-inverse

by auto
from zf-move-fun s2 have zf-move‘(embed‘c)Erange(zf-move) by (rule apply-rangel)
with z-val have z€range(zf-move) by auto
with z-val zf-newbig-def show z€zf-newbig by auto

qed

theorem zf-move-inj: zf-move€inj(big, zf-newbig)
proof —
have V a€big. V bebig. zf-move‘a = zf-move‘'b — a=b
proof —
{
fix a b
assume a€big bebig
assume move-eq: zf-move‘a = zf-move‘b
have speci-a: a:small2 = zf-move‘a = spec‘a
proof —
assume a€small2
with (a€big) show ?thesis by (simp add: zf-move-def zf-move-fun-def)
qed
have spec1-b: besmall2 = zf-move‘b = spec‘b
proof —
assume besmall2
with (bebig) show Zthesis by (simp add: zf-move-def zf-move-fun-def)
qed
have spec2-a: a¢small2 = zf-move‘a = (token,a)
proof —
assume a¢small2
with (a€big) show ?thesis by (simp add: zf-move-def zf-move-fun-def)
qed
have spec2-b: b¢small2 = zf-move‘d = (token,b)
proof —
assume b¢small2
with (bebig) show Zthesis by (simp add: zf-move-def zf-move-fun-def)
qed
have a=b
proof —
{ assume acsmall2 besmall2
from (a€small2) have zf-move‘a = spec‘a by (rule specl-a)
moreover
from (b€small2) have zf-move‘d = spec‘b by (rule spec1-b)
ultimately
have spec‘a = spec‘b using move-eq by auto
with spec-inj (a:small2) <b:small2> have a=b using inj-def by auto
}
moreover
{ assume a€small2 b¢ small2
from (a€small2) have zf-move‘a = spec‘a by (rule speci-a)
with spec-fun (a€small2) have ma-s: zf-move‘ac€small using apply-funtype
by auto

from (b¢small2) have zf-move‘d = (token,b) by (rule spec2-b)
hence zf-move‘b¢ small using token-not-small by auto
with move-eq ma-s have Fualse by auto

}

moreover

{ assume a¢small2 besmall2
from (b€small2) have zf-move‘d = spec‘b by (rule spec1-b)

with spec-fun (b€small2) have mb-s: zf-move‘bEsmall using apply-funtype

by auto

from (a¢small2> have zf-move‘a = (token,a) by (rule spec2-a)
hence zf-move‘a¢ small using token-not-small by auto
with move-eq mb-s have Fulse by auto

}

moreover

{ assume a¢small2 b small2
from <a¢small2> have mt-a: zf-move‘a = (token,a) by (rule spec2-a)
moreover
from (b¢small2) have mt-b: zf-move‘d = (token,b) by (rule spec2-b)
from move-eq mt-a mt-b have (token,a)=(token,b) by auto — Order of

from conditions is important to not cause infinite loop

hence a=0b by auto

}

ultimately show a=b by auto

qed

thus ?thesis by auto
qed
with zf-move-fun show ?thesis using inj-def by simp
qed

theorem zf-move-surj: zf-move€surj(big, zf-newbig)

proof —
have zf-move€surj(big, range(zf-move)) by (rule fun-is-surj[OF zf-move-fun])
hence %thesis zf-move€surj(big, zf-newbig) by (unfold zf-newbig-def)
show ?thesis by fact

qed

theorem zf-move-bij: zf-movecbij(big, zf-newbig)
proof —
from zf-move-inj have zf-move€bij(big, range(zf-move)) using inj-bij-range by
auto
thus ?thesis by (unfold zf-newbig-def)
qed

theorem zf-move-embed [simp|: x€small = zf-move‘(embed‘z) = x
proof —
assume z<small
with embed-fun have embed‘c€range(embed) by (rule apply-rangel)
hence s1: embed‘zesmall2 by (unfold small2-def)

with small2-sub-big have embed‘z€big by auto
with s1 have zf-move‘(embed‘c) = spec‘(embed‘z) by (auto simp add: zf-move-def
zf-move-fun-def)
also from embed-inj «x€small) spec-def have spec‘(embed‘c) = = by auto
finally show zf-move‘(embed‘c) = = by auto
qed

theorem zf-embed-move: zf-move O embed = id(small)
proof —

have V yesmall. zf-move‘(embed‘y) = y by simp

moreover

have embed: small—big by (rule embed-fun)

moreover

have zf-move: big— zf-newbig by (rule zf-move-fun)

ultimately show ?thesis using comp-eq-id-iff1 by blast
qed

end

Next prove that ZF generalization is an arbitrary generalization:

sublocale ZF-generalization C arbitrary-generalization small big embed zf-newbig
zf-move
proof
show zf-move€bij(big, zf-newbig) using zf-move-bij by auto
show zf-move O embed = id(small) using zf-embed-move by auto
qed

end

4 An example of generalization

theory int-obj-ex
imports Generalization
begin

In this example I show that integers can be considered as a generalization
of natural numbers.

interpretation int-interpr: ZF-generalization nat int (lam n:nat. int-of (n))
proof

show Lambda(nat, int-of)€inj(nat, int) using int-of-inject unfolding inj-def
by auto
qed

abbreviation int-obj = int-interpr.newbig-param

Naturals are a subset of integers.

lemma nat C int-obj using int-interpr.small-less-zf-newbig by auto

An example of defining an operation on the generalization set:

definition

add::[i,i]=1
where add(z,y) == int-interpr.move-param‘(int-interpr.ret‘c $+ int-interpr.rety)
end

10

	Link to informal document
	Some addons to Isabelle/ZF
	A theory of generalization
	Generalization situation
	Arbitrary generalizations
	ZF generalization

	An example of generalization

