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Abstract

It is a part of my |Algebraic General Topology research.

In this article, I introduce the concepts of funcoids, which general-
ize proximity spaces and reloids, which generalize uniform spaces. The
concept of a funcoid is a generalized concept of proximity, the concept of
a reloid is the concept of uniformity cleared (generalized) from superflu-
ous details. Also funcoids generalize pretopologies and preclosures. Also
funcoids and reloids are generalizations of binary relations whose domains
and ranges are filters (instead of sets).

Also funcoids and reloids can be considered as a generalization of (di-
rected) graphs, this provides us a common generalization of analysis and
discrete mathematics.

The concept of continuity is defined by an algebraic formula (instead
of the old messy epsilon-delta notation) for arbitrary morphisms (includ-
ing funcoids and reloids) of a partially ordered category. In one formula
continuity, proximity continuity, and uniform continuity are generalized.
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1 Common

1.1 Earlier works

Some mathematicians researched generalizations of proximities and uniformities
before me but they have failed to reach the right degree of generalization which
is presented in this work allowing to represent properties of spaces with algebraic
(or categorical) formulas.

Proximity structures were introduced by Smirnov in [5].

Some references to predecessors:

e In [6], [7], [12], [2], [I9] are studied generalized uniformities and proximi-
ties.

e Proximities and uniformities are also studied in [10], [IT], [18], [20], [21].

e [§] and [9] contains recent progress in quasi-uniform spaces. [9] has a very
long list of related literature.

Some works ([I7]) about proximity spaces consider relationships of proximities
and compact topological spaces. In this work the attempt to define or research
their generalization, compactness of funcoids or reloids, is not done. It seems
potentially productive to attempt to borrow the definitions and procedures from
the above mentioned works. I hope to do this study in a separate article.

[4] studies mappings between proximity structures. (In this work no at-
tempt to research mappings between funcoids is done.) [I3] researches relation-
ships of quasi-uniform spaces and topological spaces. [I] studies how proximity
structures can be treated as uniform structures and compactification regarding
proximity and uniform spaces.

1.2 Used concepts, notation and statements

The set of functions from a set A to a set B is denoted as B4.

I will often skip parentheses and write fz instead of f(x) to denote the result
of a function f acting on the argument z.

I will call small sets members of some Grothendieck universe. (Let us assume
the axiom of existence of a Grothendieck universe.)

Let f is a small binary relation.

Iwilldenote (f) X ={fa | aeX}and X [f]Y e X, yeY zfy
for small sets X, Y.



By just (f) and [f] T will denote the corresponding function and relation on
small sets.

A € D: f(z) ={(z;f(z)) | ze€ D} for every formula f (z) depended
on a variable x and set D.

I will denote the least and the greatest element of a poset 2 as 0% and 1%
respectively.

For elements a and b of a lattice with a minimal element I will denote a < b
when a Nb is the minimal element of the lattice and a % b otherwise. See [15]
for a more general notion.

Proposition 1 Let f, g, h be binary relations. Then go f 4 h < g # ho f=1.
Proof

gof#h
da,c:a ((go f)Nh)c
Jda,c:(a(gof)cAhahc)
Jda,b,c:(a fbAbgcAahc)
db, c: (bgc/\b(ho )c)
Jb,c:b (9N (hof 1)) e
g#hof

K

1.2.1 Filters

In this work the word filter will refer to a filter on a set (in contrast to [15]
where filters are considered on arbitrary posets). Note that I do not require
filters to be proper.

I will call the set of filters on a set A (base set) ordered reverse to set-
theoretic inclusion of filters the set of filter objects on A and denote it § (4)
or just § when the base set is implied and call its element filter objects (f.o.
for short). I will denote up F the filter corresponding to a filter object F. So
we have A C B < up A D up B for every filter objects A and B on the same set.

In this particular manuscript, we will not equate principal filter objects with
corresponding sets as it is done in [I5]. Instead we will have Base (A) equal to
the unique base of a f.o. A. I will denote 4 X (or just T X when A is implied)
the principal filter object on A corresponding to the set X.

Filters are studied in the work [15].

Every set § (A) is a complete lattice and we will apply lattice operations to
subsets of such sets without explicitly mentioning § (4).

Prior reading of [I5] is needed to fully understand this work.

Filter objects corresponding to ultrafilters are atoms of the lattice § (4) and
will be called atomic filter objects (on A).



Also we will need to introduce the concept of generalized filter base.

Definition 1 Generalized filter base is a set S € 2§\ {05} such that

VA,BeSIC e S:CCANB.

Proposition 2 Let S is a generalized filter base. If Ay,..., A, € S (n € N),
then
esS:CCAN...NA,.

Proof Can be easily proved by induction. O

Theorem 1 If S is a generalized filter base, then up (S = (up) S.

Proof Obviously up(S 2 J(up)S. Reversely, let K € up()S; then K =
A;N...NA, where A; € upA; where 4; € S, i =1,...,n, n € N; so exists
Ce Ssuchthat C C A Nn...NnA, CF (41N...NA,) =t K, K € upC,
K e |J(up)S. O

Corollary 1 If S is a generalized filter base, then (S = 05 < 05 € S.

Proof NS=05<0cupNSehcUp)Se3X¥eS:0ecupdX & 0% ¢
S. O

Obvious 1. If S is a filter base on a set A then <TA> S is a generalized filter
base.

Definition 2 I will call shifted filtrator a triple (A; 3;1) where A and 3 are
posets and T is an order embedding from 3 to 2.

Some concepts and notation can be defined for shifted filtrators through
similar concepts for filtrators: (1) upa = up®"3) a; (1) Cora = Cors(M3) ¢
etc.

For a set 20 and the set of f.o. § on this set we will consider the shifted
filtrator (§;%2;1).

2 Partially ordered dagger categories

2.1 Partially ordered categories

Definition 3 I will call a partially ordered (pre)category a (pre)category
together with partial order C on each of its Hom-sets with the additional require-
ment that

1 ChANgCg=gi0ofi Cg20fo

for every morphisms f1, g1, f2, g2 such that Src f; = Src fo ADst f; = Dst fo =
Src g1 = Srcga A Dst g1 = Dst gs.



2.2 Dagger categories

Definition 4 I will call a dagger precategory a precategory together with an
involutive contravariant identity-on-objects prefunctor x — xt.

In other words, a dagger precategory is a precategory equipped with a
function x — x on its set of morphisms which reverses the source and the
destination and is subject to the following identities for every morphisms f and

9:
1t
2. (go f)f = flog".

Definition 5 I will call a dagger category a category together with an invo-
lutive contravariant identity-on-objects functor x — xt.

In other words, a dagger category is a category equipped with a function
x — z on its set of morphisms which reverses the source and the destination
and is subject to the following identities for every morphisms f and g and object

A:

1Lt
2. (go f)f = flogl;
3. (L)t =14.

Theorem 2 If a category is a dagger precategory then it is a dagger category.

Proof We need to prove only that (14)" = 14. Really
(L)' = (1a) T ola=(14) o (14)T = ((1a)T 0 14)" = (10)T = 14.

O

For a partially ordered dagger (pre)category I will additionally require (for
every morphisms f and g)

ficgd e fcy

An example of dagger category is the category Rel whose objects are sets and
whose morphisms are binary relations between these sets with usual composition
of binary relations and with ff = f—1.

Definition 6 A morphism f of a dagger category is called unitary when it is
an isomorphism and ft = f=1.

Definition 7 Symmetric (endo)morphism of a dagger precategory is such a
morphism f that f = fT.



Definition 8 Transitive (endo)morphism of a precategory is such a morphism

f that f= fof.

Theorem 3 The following conditions are equivalent for a morphism f of a
dagger precategory:

1. f s symmetric and transitive.

2. f=flof.

Proof

(1)=(2) If f is symmetric and transitive then ffo f = fo f = f.

(2)=@1) fl=(fTof)I = floftT = flof = f, so f is symmetric. f = flof =

fof,so fis transitive.

O

2.2.1 Some special classes of morphisms

Definition 9 For a partially ordered dagger category I will call monovalued
morphism such a morphism f that fo fT C 1pg 7

Definition 10 For a partially ordered dagger category I will call entirely de-
fined morphism such a morphism f that f1o f 2 g .

Definition 11 For a partially ordered dagger category I will call injective mor-
phism such a morphism f that ffo f C lg. .

Definition 12 For a partially ordered dagger category I will call surjective
morphism such a morphism f that f o fT 2D lpstf-

Remark 1 It’s easy to show that this is a generalization of monovalued, entirely

defined, injective, and surjective binary relations as morphisms of the category
Rel.

Obvious 2. “Injective morphism” is a dual of “monovalued morphism” and
“surjective morphism” is a dual of “entirely defined morphism”.

Definition 13 For a given partially ordered dagger category C the category
of monovalued (entirely defined, injective, surjective) morphisms of
C is the category with the same set of objects as of C' and the set of morphisms
being the set of monovalued (entirely defined, injective, surjective) morphisms
of C with the composition of morphisms the same as in C.



We need to prove that these are really categories, that is that composition
of monovalued (entirely defined, injective, surjective) morphisms is monovalued
(entirely defined, injective, surjective) and that identity morphisms are mono-
valued, entirely defined, injective, and surjective.

Proof We will prove only for monovalued morphisms and entirely defined
morphisms, as injective and surjective morphisms are their duals.

Monovalued Let f and g are monovalued morphisms, Dst f = Srcg. (go f)o
(gof)f =gofoflogh Cgolpyyogh=golscgog’ =gogh Clpsy=
IDst(gof)- S0 g o f is monovalued.

That identity morphisms are monovalued follows from the following: 14 o
(1a)f =1a0la=14=1Ips1, C IDst1a-

Entirely defined Let f and g are entirely defined morphisms, Dst f = Srcg.
(gof)fo(gof)=floglogof D flolscgof = flolpuysof=flof2
Isre f = lsre(gop)- S0 g o f is entirely defined.
That identity morphisms are entirely defined follows from the following:
(1a)fola=1a0la=14=1I50c1, 2 Isrcin-

O

Definition 14 [ will call a bijective morphism a morphism which is entirely
defined, monovalued, injective, and surjective.

Obvious 3. Bijective morphisms form a full subcategory.

Proposition 3 If a morphism is bijective then it is an isomorphism.

Proof Let f is bijective. Then f o fT C 1pst f, flfofD Isre f, ffofcC Isre f,
foftD 1pst f. Thus foft= 1pst f and flof= 1src f that is f1is an inverse
of f. O

3 Funcoids

3.1 Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pre-
topological spaces. Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces,
(pre)topological spaces) and binary relations (including monovalued functions)
makes them smart for describing properties of functions in regard of spaces. For
example the statement “f is a continuous function from a space p to a space
v” can be described in terms of funcoids as the formula fou C vo f (see below
for details).

Most naturally funcoids appear as a generalization of proximity spaces.



Let § be a proximity that is certain binary relation so that A § B is defined
for every sets A and B. We will extend it from sets to filter objects by the
formula:

A BeVAcup A BeuB:AdB.
Then (as it will be proved below) there exist two functions a, 3 € F° such that

A& B BnSad#£0% < AN B # 05.

The pair (a; 3) is called funcoid when B NS ad # 05 < ANS BB # 05. So
funcoids are a generalization of proximity spaces.

Funcoids consist of two components the first o and the second 5. The first
component of a funcoid f is denoted as (f) and the second component is denoted
as < f ’1>. (The similarity of this notation with the notation for the image of a
set under a function is not a coincidence, we will see that in the case of principal
funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely
determined by just one of its components. That is a funcoid f is uniquely
determined by the function (f). Moreover a funcoid f is uniquely determined
by (f) |2 Jdom(y) that is by values of function (f) on sets (if we equate principal
filters with sets).

Next we will consider some examples of funcoids determined by specified
values of the first component on sets.

Funcoids as a generalization of pretopological spaces: Let « be a pretopo-

logical space that is a map a € F° for some set U. Then we define o/ X Lef
U {az | z e X} for every set X € 20. We will prove that there exists a
unique funcoid f such that o/ = (f)|2i. So funcoids are a generalization of
pretopological spaces. Funcoids are also a generalization of preclosure opera-
tors: For every preclosure operator p on a set U it exists a unique funcoid f
such that (f) |zt =T op.

For every binary relation p on a set U it exists unique funcoid f such that
VX € 20 : (f) T X =1 (p) X (where (p) is defined in the introduction), recall
that a funcoid is uniquely determined by the values of its first component on
sets. I will call such funcoids principal. So funcoids are a generalization of
binary relations.

Composition of binary relations (i.e. of principal funcoids) complies with
the formulas:

(gof)={g)olf) and ((gof)™")=(f")o(s7").

By the same formulas we can define composition of every two funcoids. Funcoids
with this composition form a category (the category of funcoids).

Also funcoids can be reversed (like reversal of X and Y in a binary relation)
by the formula (o; 8)~! = (B; ). In particular case if y is a proximity we have
1! = 11 because proximities are symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filter
objects instead of acting on sets. Below these will be defined domain and image
of a funcoid (the domain and the image of a funcoid are filter objects).



3.2 Basic definitions

Definition 15 Let’s call a funcozd from a set A to a set B a quadruple
(A; B; a; B) where a € S’(B) ), Be F(A ) ) such that

VX €F(A),YeF(B): (V#aX & X £pY).

Further we will assume that all funcoids in consideration are small without
mentioning it explicitly.

Definition 16 Source and destination of every funcoid (A; B;«; 8) are de-
fined as
Src(A;B;a;8)=A and Dst(A4A;B;o;8) =B
I will denote FCD (A; B) the set of funcoids from A to B.
I will denote FCD the set of all funcoids (for small sets).

Definition 17 ((A; B; «; f)) RN for a funcoid (A; B; «; 8).
Definition 18 (A; B;a;3)~! = (B; A; B; ) for a funcoid (A; B;a; 3).

Proposition 4 If f is a funcoid then f~! is also a funcoid.

Proof It follows from symmetry in the definition of funcoid. O

Obvious 4. (f~!)~! = f for a funcoid f.

Definition 19 The relation [fle & (F (Src f) x § (Dst f)) is defined (for every
def

]<”u7>woid fand X € F(Srcf), Y € §(Dst f)) by the formula X [f] Y = YV #
fx.

Obvious 5. X [f]Y & YV # (/)X & X # (f~1) Y for every funcoid f and
X egF(Srcf),YeF(Dstf)

Obvious 6. [f~!]= [f]”" for a funcoid f.

Theorem 4 Let A, B are small sets.
1. For given value of (f) exists no more than one funcoid f € FCD (4; B).
2. For given value of [f] exists no more than one funcoid f € FCD (A; B).

Proof Let f,g € FCD (4; B).
Obviously (f) = (g) =[f]=[g] and (f~') = (g~') =[f]=[g]. So it’s enough
to prove that [f]=[g]= (f) = (9).

Provided that [f]=[g] we have Y £ (X € X [f]Y e X [g] YV & YV #
(9) X and consequently (f)X = (g) X for every X € F(A4) and Y € F(B)
because a set of filter objects is separable [I5], thus (f) = (g). O

10



Proposition 5 (f)056ref) = 030t f) for every funcoid f.

Proof Y # (f)056ref) & 056G % (f~1)Y « 0« Y # 050t Thus
(f)08Gref) = o8(Dstf) by separability of filter objects. O

Proposition 6 (f) (ZU J) = (f)Z U (f)T for every funcoid f and I,J €
5 (Src f).

Proof
() (TuT) =
Yes | y2N@LI)} =
{(Yyeg | TuT #{(f")Y} = (by corollary 10 in [I5])
es | 22 HYVvI£{HY} =
Yes | YANIVYIA(NHIT} =
{Yed | Y2NIU(NHT} =
*({(HTU{)T)
Thus (/Y (ZUJ) = (f)ZU(f) T because § (Dst f) is separable. O

Proposition 7 For every f € FCD (A;B) for every small sets A and B we
have:

1. K[f1ZUT < K[f]1ZVK[f] T for everyZ,J € F(B), K € F(A).
2IUJIK<eZfIKVTI[f]IK for every Z,T € §(A), K € F(B).

Proof 1. K [f]ZTUT < (ZUJT)N{f)K #05B) = (TN (fHK)U(T N{f)K) #
03B o ZN(HKA0BE v IN(HK#A03B) <K [f]TVKI[f]JT.
2. Similar. O

3.2.1 Composition of funcoids

Definition 20 Funcoids f and g are composable when Dst f = Srcg.
Definition 21 Composition of composable funcoids is defined by the formula
(B; Cya2; B2) o (A; Bya; 1) = (A; Csag 0 o i o Ba).

Proposition 8 If f, g are composable funcoids then go f is a funcoid.

Proof Let f = (A;B;a1;061), g = (B;C;ag;82). For every X € §(A), Y €
F(C) we have

y X (OZQOOLl)X = y }A OéQOélX = O[lX }A [32)) = X }A ﬂlﬂQy = X }A (ﬁloﬂQ)y.

11



So (A4; C;az 0 ag; B 0 Ba) is a funcoid. O
Obvious 7. {go f) = (g) o (f) for every composable funcoids f and g.

Proposition 9 (hog)o f =ho(go f) for every composable funcoids f, g, h.

Proof
((hog)o f)={(hog)o(f)=((R)o(g))o(f) = (h)o({g)o(f)) = (h)o(go f) =
(ho(gof)). O

Theorem 5 (go f)™! = f~tog™! for every composable funcoids f and g.
Proof <(gof)71>: <f*1>o<g*1>: <fflog71>. O

3.3 Funcoid as continuation

Let f is a funcoid.

Definition 22 (f)" is the function & (Src f) — F (Dst f) defined by the for-
mula

()X = ()15 X.

Definition 23 [f]* is the relation between & (Src f) and & (Dst f) defined by
the formula
X [f]* Yy :TSrcf X [f]TDSt f Y.

Obvious 8.
L(f)" = (f) o>l
2 [f]'= (1P49) o [f o L.

Theorem 6 For every funcoid f and X € F(Src f) and Y € §F (Dst f)
L)X =N{f")upX;
2. X[flY VX euwpX,Y euwp) : X [f]"Y.

Proof 2. X [f]Y & YN ()X £05PN) o vy e up) AP v n (f) & #
03Pt vy cup) @ X [Pt Y.

Analogously X [f] YV < VX € upXx 15/ X [f] V. Combining these two
equivalences we get

X[flYye VX cuwpX,Y cupd ¥ X [fItP Y VX cupX,Y eupd: X [f]" Y.
LYN(HAX AP o X [f]Y & VX cupk 45 X [f] Y & VX €
up X YN (f)" X #0850t ),

12



Let’s denote W = {¥N(f)"X | X ecupX}. We will prove that W
is a generalized filter base. To prove this it is enough to show that V =
{{f/)y"X | X cupX} is a generalized filter base.

Let P,Q € V. Then P = (f)" A, Q = (f)" B where A,B € upX; ANB €
upX and R C PNQfor R = (f)"(ANB) € V. So V is a generalized filter
base and thus W is a generalized filter base.

085(Dstf) ¢ W = MW # 05(Pstf) by the corollary [ of the theorem [l That
is

VX eupX YN (f)* X #050Pst) @ymﬂ<<f>*>up/y # (F(Dst )

Comparing with the above, Y N (f) X # 05s)) o yn N Hup X #
08Pt So (f) X = {({(f)") up X because the lattice of filter objects is sepa-
rable. (]

Proposition 10 For every f € FCD (4; B) we have (for every I,J € P A)
(NT0=055 () (IUuT)= ()" TU(f)"J

and

(I[f1"0), IUJ[fI' K<I[fI"KVJI[f]"K (foreveryl,]Jec PA Kc PB),
DD, K[fI"IuJeK[fI"IVKI[f]"J (foreveryl,Jc PB, Kc PA).

Proof (f)"0=(f) 10 = (f)05W = 08B (f)"(TuJ) = (/)1 (TUJ) =
(/A IutA ) = (A TU) A T = (" TU(f)"J.

I 0 0SB £ (A4 T 0, TUJT[f]T K et (Tu)) [fItF K 1P
K # (N (1UJ) @18 K % (1) TU() T <18 K # (1) TV 18 K # ()" T &
LI KVJ[f] K.

The rest follows from symmetry. O

-
-

Theorem 7 Fiz small sets A and B. Let Ly = \f € FCD (4;B) : (f)" and
Lr = \f € FCD (A; B) :[f]".

1. Ly is a bijection from the set FCD (A; B) to the set of functions o € § (B)”*
that obey the conditions (for every I,J € P A)

a) =058 o(ITUJ)=alUal. (1)
For such « it holds (for every X € §(A))

(Lp'a) X = ﬂ (o) up X. (2)

2. Lg is a bijection from the set FCD (A; B) to the set of binary relations 6 €
P (PAx PB) that obey the conditions

-(I60), IUJOSK<SISKVJOK (foreveryl,Je PA Ke PB),
-(061), KOIUJSKSIVKSJT (foreveryl,Je PB, K e PA).

(3)

13



For such 0 it holds (for every X € §(A), Y € §(B))

X [Lp'0) Y& VX ewpX,Y eupY: XY, (4)

Proof Injectivity of Lr and Lg, formulas @) (for @ € im Lr) and @) (for
0 € im Lp), formulas () and (@) follow from two previous theorems. The only
thing remained to prove is that for every a and § that obey the above conditions
a corresponding funcoid f exists.
2. Let define o € § (B)?* by the formula d(aX) ={Y € #B | X4§Y}
for every X € ZA. (It is obvious that {Y € B | X §Y} is a free star.)
Analogously it can be defined 8 € § (A) Z8B by the formula 0BY)={XeZXA | XY}
Let’s continue o and S to o/ € S(B)S(A) and 8 € § (A)S(B) by the formulas

a’Xzﬂ(a)upX and ﬁ’y=ﬂ(ﬁ>upy
and 6 to &' € Z (F(A4) x §(B)) by the formula
X YevVXcuplX,Ycupl: X4Y.

VNa'X #0585 < ynN{a)upt # 055 < N (VN (a)up X # 05F). Let’s
prove that
W =) (a)up X

is a generalized filter base: To prove it is enough to show that (a)up X is a
generalized filter base. If A, B € (o) up X then exist X7, Xo € up X such that
A=aX; and B = aXo.

Then a(X; N X2) € (@)upX. So (a)up X is a generalized filter base and
thus W is a generalized filter base.

Accordingly to the corollary [ of the theorem [, () (¥N) (a) up X # 05(B) is
equivalent to

VX eupX:YnaX #0558,

what is equivalent to VX € upX,Y € upY AP Y naX # 05F) o VX ¢
upX,Y e upy :Y € 9(aX) & VX € upX,Y € upY : X 6 Y. Combining
the equivalencies we get Y N o/ X # 05(B) o X § ). Analogously X N 'Y #
05 o X ¢ Y. SoYNadX #05B) & xnpY #0354 that is (4; B;o'; 3)
is a funcoid. From the formula ) N a/X # 05(B) o X §' Y it follows that

X (4B B Y1l Ynad 12 X 2058 ot X 1P Y & X6 Y.

1. Let define the relation § € Z(ZA x #B) by the formula X § Y <18
Y NnaX #0558,

That —(0 § I) and —(I & 0) is obvious. We have IUJ § K <18 Kna(1UJ) #
05B) 1B Kn(al Uald) #05B) e14B8 Knal # 05B)v 418 Knal # 05F) o
IS KV JJK and

K§IuJ P Tud)nak # 058 o (1B 1U1P J)naK # 058 &
(tBInaK)u (1B JnaK) # 05B) 48 Inak # 05Bv 8 JnaK #
05B) o KS§IVK G J.
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That is the formulas [B]) are true.
Accordingly the above there exists a funcoid f such that

X[flYeVvVX ceupX,Yeupl: XiY.

VX € PAY e ZB: (1PYN(HMMX#A05BE A X [P Y & X §Y &8 Y naX #£055),
consequently VX € ZA:aX = (f) ™ X = (f)" X. O

Note that by the last theorem to every proximity J corresponds a unique
funcoid. So funcoids are a generalization of (quasi-)proximity structures.

Reverse funcoids can be considered as a generalization of conjugate quasi-
proximity.

Definition 24 Any small (multivalued) function F : A — B corresponds to
a funcoid 1FPAB) F ¢ FCD (A; B), where by definition <TFCD(A?B) F>X =
N{(18) ((F))up X for every X € F (A).

Using the last theorem it is easy to show that this definition is monovalued
and does not contradict to former stuff. (Take a =18 o (F).)

Definition 25 Funcoids corresponding to a binary relation (= multivalued func-
tion) are called principal funcoids.

We may equate principal funcoids with corresponding binary relations by
the method of appendix B in [I5]. This is useful for describing relationships of
funcoids and binary relations, such as for the formulas of continuous functions
and continuous funcoids (see below).

Theorem 8 If S is a generalized filter base on Src f then (fY(S = (N {({(f)) S
for every funcoid f.

Proof (f)(S C (f)X for every X € S and thus (f)(S C N {{/)S.
By properties of generalized filter bases:

(HNS=N{H"HupNS =
NUAHIX | FPes: XeuwP=N{(fH"X | IPeS:XecuP}2
N{HP | PesSt=N{MNS. O

3.4 Lattices of funcoids

Definition 26 f C g dﬁf[f]g[g] for f,g € FCD.

Thus every FCD (4; B) is a poset. (It’s taken into account that [f]#[g] if
f#9)

Definition 27 [ will call a shifted filtrator of funcoids the shifted filtrator
(FCD (4; B); Z (A x B) ; 17PUA))

for some small sets A, B.

(FCD (A;B); 2 (A x B) ;TFCD(A;B))

up f def up f for every funcoid f € FCD (A; B).
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Lemma 1 (f)*X = N{tP*"/ (F)X | Feupf} for every funcoid f and
set X € & (Srcf).

Proof Obviously (f)* X CO{tP**/ (F)X | Feupf}.

Let Beup(f)" X. Let Fg = X x BU((Src f) \ X) x (Dst f).

(Fp) X = B.

We have ) # P C X = (Fg) P=B2 (f)" Pand 0 # P ¢ X = (Fp) P =
Dstf 2 (f)* P. Thus (Fg)P 2 (f)" P for every set P € & (Srcf) and so
AFCD(Sre fiDst f) fp O f that is Fg € up f.

Thus VB € up (f)" X : Be up\ {1/ (F)X | F €upf} because B €
up 1P (Fip) X.

So {1/ (F)X | Feupf}C(f) X, O

Theorem 9 (f)X = {(HFPE</DtN) Ay | Feupf} for every fun-
coid f and X € F(Src f).

Proof N{(#FCEefDst pyx | Feupf}=N{NAP*) (F))upX | Feupf}=
N{N{T ()X | Xeuwd} | Feuwfi=N{N{P/(F)X | Feuwf} | Xecuwp}=
A{tP ()" X | X €eupX} = (f) X (the lemma used). O

Conjecture 1 FEwvery filtrator of funcoids is:
1. with separable core;

2. with co-separable core.

Below it is shown that FCD (A; B) are complete lattices for every small sets
A and B. We will apply lattice operations to subsets of such sets without
explicitly mentioning FCD (A; B).

Theorem 10 FCD (4; B) is a complete lattice (for every small sets A and B).
For every R € PFCD (A;B) and X € A, Y € B

L. X[UR"Y < 3fcR: X [f]"Y;
2. (UR"X=U{{N"X | feRry.

Proof Accordingly [T4] to prove that it is a complete lattice it’s enough to
prove existence of all joins.

2 aX d:er{<f>*X | f €R}. We have af) = 05Dt /),

a(tug) = J{n uug) | fery
= Ul rupn s | fery
Ui 1 | rerfulJ{N7 | fer)

= alUal.
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So (h) o 4= «a for some funcoid h. Obviously
VfeR:h2Df (5)

And h is the least funcoid for which holds the condition ([@)). So h = JR.

1 X [UR"Y 1P YA(UR)® X #0508 4D f vy {(f)* X | fe R} #

03Pstf) o Jf e R AP YN (f)*X £05PN) o Ifc R: X [f]'Y
(used the theorem 40 in [15]).

O

In the next theorem, compared to the previous one, the class of infinite
unions is replaced with lesser class of finite unions and simultaneously class of
sets is changed to more wide class of filter objects.

Theorem 11 For every f,g € FCD (A; B) and X € § (A) (for every small sets
A, B)

L{fugX={fxulgx;

2. [fugl=[flulg]-

Proof

L Let aX & (HX U)X, pY ¥

Y e F(B). Then

(fTHYU(g7") Y for every X € F(A),

YnaX #0559 o yn(f)x£05P vyn(g)x #05P

& XNV AWV X)) £ 07

& XNBY#£05W,
So h = (4; B; ;) is a funcoid. Obviously h O fand h D g. If p D f and
p 2 g for some funcoid p then (p) X D (f) X U (g) X = (h) X that is p D h.
So fUg=h.
X [fUug Ve yn(fugd #0587 < yn(f)Xulgx) # 050 <
YOX £ B VYN ()X £ 0B & X [f] YV X [g] Y for every
Xeg Y

O

3.5 More on composition of funcoids

Proposition 11 [go f]=[g] o (f) = <g_1>_1o [f] for every composable fun-
coids f and g.
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Proof X [gof]Y & YN (gof)X #05Pt9) o yn(g) (f) X # 05(Pst9)
(£) X [g] Y & X([g] o (f)Y for every X € F (Src f), ¥ € § (Dstg). [go fl=[(f 1 og ™) '|=[fTog™!] "=
([ elg™ N =g o lf) O

The following theorem is a variant for funcoids of the statement (which

defines compositions of relations) that x(go f)z < Jy(x f y Ay g 2) for every
x and z and every binary relations f and g.

Theorem 12 For every small sets A, B, C and f € FCD (4; B), g € FCD (B; C)
and X € §(A), Z e F(C)

X[gof] Ze Iyecatoms15B) . (X [flyAylg] Z).

Proof

Jy € atoms 15B) - (X [fly Ay [g] 2) Jy € atoms 15(B) . (Zﬂ (yy £ 05D Ayn(fYX £ OS(B))

=
& HyEatomslg(B):(Zﬂ<g>y#03(c)/\y§<f>x)
= ZnN{g)(f) X # 05

& Xgof] 2.

Z,

Reversely, if X [go f] Z then (f) X [g] Z, consequently exists y € atoms (f) X
such that y [g] Z; we have X [f] y. O

Theorem 13 For every small sets A, B, C
1. fo(gUh)= fogUfoh for g h € FCD (4;B) and f € FCD (B;C);
2. (gUR)of=gofUhof for g,h € FCD(B;C) and f € FCD (A4; B).

Proof I will prove only the first equality because the other is analogous.
For every X € §(4), Z € F(C)

X [fo(gUh) Z <& Ty € atoms 18(B)

& Jdy € atoms 13(B)
Jy € atoms 13(B)
Jy € atoms 13(B)
X[foglZVX[f
X [fogUfoh]Z.

XgUuhlyAylf] 2)

(X lglyvXI[hly) Anylf]l 2)

glyny [flZ2VX[hyAy[f] 2)

gy Ay [f] 2)V Iy € atoms 15B) - (X By Ay [f] 2)
h) 2

(
(
(X
(X

to ¢

O

Conjecture 2 go f = ({1FPE</Dste) (GoF) | Feupf,Geupg} for
every composable funcoids f and g.
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3.6 Domain and range of a funcoid

Definition 28 Let A be a small set. The identity funcoid I"PX) = (4; 4; (=)|3.4); (5)[3(4)) -

Obvious 9. The identity funcoid is a funcoid.

Definition 29 Let A be a small set, A € F(A). The restricted identity
Sfuncoid
TP = (45 A; An; AN).

Proposition 12 The restricted identity funcoid is a funcoid.

Proof We need to prove that (ANX)NY # 05 & (ANY)N& £ 05A)
what is obvious. [l

Obvious 10.
1. (IFCD(A))*l _ JFCD(A).

2. (IFP) ™" = IFCP.

Obvious 11. For every X,) € § (4)
L X [IFPWD] Yy e xny #05W,

2. X [I5PP] Y & AnxnYy +#05W.

Definition 30 [ will define restricting of a funcoid f to a filter object A €
F (Src f) by the formula

def FCD
= fOIA .

fla

Definition 31 Image of a funcoid f will be defined by the formula im f =
(f)18Sref),
Domain of a funcoid f is defined by the formula dom f = im f~1.

Proposition 13 (f) X = (f) (X Ndom f) for every f € FCD, X € § (Src f).

Proof For every Y € §(Dst f) we have Y N (f) (X Ndom f) # 05Pst/) &
X Ndom fN <f*1>y £ 086f) o ¥ nimf1 N <f*1>y 408 o ¥ 0
(F7HY #0565 & Yy (f)x # 05D Thus (f) X = (f) (X N dom f)
because the lattice of filter objects is separable. O

Proposition 14 X Ndom f # 056 /) o (f) X # 05Ot )) for every f € FCD,
X € §(Srcf).
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Proof X Ndomf # 056 « XN (f1)180stf) £ g5Eref) o 180stf) 0

(fYX # 05 (Dst f) o (f) X # 08 (Dst f) 0
Corollary 2 dom f = {a € atoms 156 | (f)a # 0F(Dst f)}.
Proof This follows from the fact that § (Src f) is an atomistic lattice. O

Proposition 15 dom f|4 = ANdom f for every funcoid f and A € § (Src f).
Proof dom f|4 =im (I5P o f=1) = (IFP) (f~1) 1Ot = An(f=1) 1(Dsth) =
ANdom f. N

Theorem 14 im f = ((1P**/) (im)up f and dom f = M (157¢/) (dom) up f
for every funcoid f.

Proof 1rnf — <,f> 1S(Src f) — m {<TFCD(SrC f;Dst f) F> 1S(Src f) | Fe upf} —
A{tP*/imF | Feupf}=N"P") (im)up f (used the theorem [).
The second formula follows from symmetry. (]

Proposition 16 For every composable funcoids f, g:
1. Ifim f D domg then im (go f) =img.

2. Ifim f C domg then dom (g o f) = dom f.

Proof

L im(go f) = (go f) 156 = (g) (f) 156<S) = (g) im f = (g) (im f Ndom g) =
(g)dom g = (g) 15679 = img.

2. dom(go f) =im (f~' o g~') what by proved above is equal to im f~! that
is dom f.

d

3.7 Categories of funcoids

I will define two categories, the category of funcoids and the category of
funcoid triples.
The category of funcoids is defined as follows:

e Objects are small sets.
e The set of morphisms from a set A to a set B is FCD (A4; B).
e The composition is the composition of funcoids.

e Identity morphism for a set is the identity funcoid for that set.
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To show it is really a category is trivial.
The category of funcoid triples is defined as follows:

e Objects are filter objects on small sets.

e The morphisms from a fo. A to a f.o. B are triples (f;.A;B) where
f € FCD (Base (A) ;Base (B)) and dom f C AAim f C B.

e The composition is defined by the formula (g; B; C)o(f; A; B) = (g o f; A;C).
e Identity morphism for an f.o. A is IFP.

To prove that it is really a category is trivial.

3.8 Specifying funcoids by functions or relations on atomic
filter objects

Theorem 15 For every funcoid f and X € § (Src f), Y € F (Dst f)
1. (fyX = {{f)) atoms X;
2. X [f]Y < 3z € atoms X,y € atomsY : z [f] y.
Proof 1.
YN X£05PD o X (f71) Y £ 056
& JreatomsX:zn(f )Y # S (Sref)
& JrcatomsX YN (f)x#£ 05Dt

O(f) X =U(9) ((f)) atoms X = J ((f)) atoms X"
2. If X [f] Y, then Y N (f) X # 05(PstS) | consequently exists y € atoms )

such that y N (f) X # 08Pt X [f] y. Repeating this second time we get that
there exists x € atoms X" such that = [f] y. From this follows

Jz € atoms X,y € atoms ) : z [f] y.

The reverse is obvious. O

Theorem 16 Let A and B be small sets.

§(4)
1. A function o € F (B)*°™! such that (for every a € atoms 15(4) )

aa C ﬂ<U0<a> o atoms o TA>upa (6)
can be continued to the function (f) for a unique f € FCD (A4; B);
(fHXx = U (o) atoms X (7)

for every X € §(A).
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2. A relation § € P(atoms15() x atoms15B)) such that (for every a €
atoms 15(4) b € atoms 15(5) )

VX cupa,Y € upbIz € atoms 1t X,y c atoms 12 Y :zdy=adb (8)
can be continued to the relation [f] for a unique f € FCD (A; B);
X [f]Y & 3z € atoms X,y € atomsY :x J y (9)

for every X € §(A), Y € §(B).

Proof Existence of no more than one such funcoids and formulas (@) and (@)
follow from the previous theorem.

1. Consider the function o € § (B)‘@A defined by the formula (for every
X e ZA)

o' X = U () atoms 1 X.

Obviously o/ = 05(B). For every I,.J € ZA
d(ITUJ) = U
= U ((a) atoms M TU (a) atoms 14 J)

U () atoms 1 T U U () atoms 14 J.
= dTudJ.

() atoms 1 (T U J)
(

) (atoms 1 I U atoms 14 .J)

Let continue ' till a funcoid f (by the theorem[): (f) X = () {a/)up X.
Let’s prove the reverse of (@):

ﬂ <UO (a) o atoms o TA> wpa =

Finally,
aa = ﬂ<Uo<a) oatomsoTA>upa= m<a’>upa: (f)a,

so (f) is a continuation of «.
2. Consider the relation §' € P (XA x P B) defined by the formula (for
every X € ZA, Y € #B)

XY o3z eatomst X,y catoms 1P Y 24 y.
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Obviously —(X ¢’ ) and —(0 6" Y').
For suitable I and J we have:
(TUJ)§Y < 3Fzeatomst? (TUJ),ycatomstBY:zdy
& Jz € atoms 1 TUatoms 1 J,y € atoms 18 Y : 2 y
& Jreatomst Iy catoms P Y 1z 8y Vv Iz € atoms M J,y € atoms 1P Y 1z 8y
& I§dYVvJdY;

similarly X ¢’ (JUJ) < X §' Iv X ¢’ J for suitable I and J. Let’s continue ¢’
till a funcoid f (by the theorem [7)):

X[fl]YyeVvVXeuwk,Yeupy: X§Y.
The reverse of () implication is trivial, so
VX cupa,Y € upbIz € atoms ™ X,y € atoms 1P Y : 26y < a d b.

VX € upa,Y € upbdz € atoms 1 X,y € atoms 18 Y 1 2 6 y & VX €
upa,Y €upb: X §'Y < a[f]b.
So a d b < a[f]b, that is [f] is a continuation of 4. O

One of uses of the previous theorem is the proof of the following theorem:

Theorem 17 If A, B are small sets, R € PFCD(A;B), = € atoms 154,
y € atoms 15(5) | then

L(NR)z=N{f)z | feR}k
2.z[NRlyeVfeR:xz|[fly.

Proof 2. Let denote z 6 y < Vf € R : z [f] y. For every a € atoms15(4),
b € atoms 15(5)

VX €upa,Y € upbdzr € atoms ™ X,y € atoms T2 Y 120y =
Vfe R, X cupa,Y € upbIz € atoms 14 X,y € atoms 12 Y : z [f] y =
Vfe R, X cupa,Y cupb: X [f]'Y =
VfeR:a[f]b&
adb.

So, by the theorem[I0] 6 can be continued till [p] for some funcoid p € FCD (A; B).

For every funcoid ¢ € FCD (A; B) such that Vf € R : ¢ C f we have
zlqly=VfeR:z[flyeaxdy < xply soq C p Consequently
p=NR

From this z [NRly < Vf e R:z [f] y.

1. From the former y € atoms (\R)z < yN{(R)z # 05B) & Vf € R:yN

(f)x #0500 oy e N (atoms) {(f)z | fe€R}eyecatomsN{(flz | feR}
for every y € atoms 15(4). From this follows (\R)z =N {(f)z | f€R}. O
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Theorem 18 Let A, B, C be sets, f € FCD(A;B), g € FCD(B;C), h €
FCD (A;C). Then
gof%h@g%hofﬁl.

O R O

Proof
gof#h
Ja € atoms 15 ¢ € atoms 15 s a [(go f)Nh] ¢
Ja € atoms 154 ),CEatomslg( )i(algoflenalh]e)
Ja € atoms 15 b € atoms 158) ¢ € atoms 159 = (a [f] bAD [g ]c/\a[ e
3 € atoms 157 ¢ € atoms 159 : (b[g] cAb [ho f7] ¢)
3 € atoms 15P) ¢ € atoms 159 : b [gn (ho f71)] ¢
g#hof
O

3.9 Direct product of filter objects

A generalization of direct (Cartesian) product of two sets is funcoidal product
of two filter objects:

Definition 32 Funcoidal product of filter objects A and B is such a funcoid
A xFP B € FCD (Base (A) ; Base (B)) that for every X € §(Base(A)), V €
5 (Base (B))

X [AXFPB| Y& X £ ANY #£B.

Proposition 17 A x™P B is really a funcoid and
B it X % A,
FCD _ ;
(AXTEB) & = { 05 Base()) if x < A,
Proof Obvious. O

Obvious 12. tFPWUY) (A x B) =tV AxFP 4V B for sets AC U and BC V
(for some small sets U and V).

Proposition 18 f C A xFP B & domf C AAimf C B for every f €
FCD (A; B) and A€ §(4), B e F(B).

Proof If f C A x"P B then dom f C dom(A x P B) C A, im f C im(A x"P
B) C B. If dom f C AAim f C B then

VX €F(A),YeF(B): (X [flY=XNA#0TD AYNB £ 05Dy,
consequently f C A x"P B. O

The following theorem gives a formula for calculating an important particular
case of intersection on the lattice of funcoids:
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Theorem 19 f N (A xFP B) = IFP o f o IFP for every funcoid f and A €
3 (Stcf), B e §(Dst /).

Proof h % IFP o f o IFCP. For every X € § (Src f)
(hy X = (IEP) (f) {IFP) X = BN (f) (AN X).

From this, as easy to show, h C fand h CAXFPB. IfgC fAgC AxFPB
for a g € FCD (Src f;Dst f) then domg C A, img C B,

(9) X =B {g) (ANX) CBN(f) (ANX) = (I5°) (f) (IIP) X = (h) X,
g C h. So h=fNFP (A xFP B). O

Corollary 3 f|4 = fN(Ax P1SPtH) for every f € FCD and A € F (Src f).
Proof fN(AxFPIE®D) = [ER . ;o fo Il = follP = fla. O
Corollary 4 f # (A x"P B) < A [f] B for every f € FCD, A € § (Src f),
B e F(Dst f).

Proof [ # (AxTPB) & (f N (A XL B))" (Stc f) # 03Pt o (IEP o f o IFP) (Sre f) #
Of";’(Dst ) o <IECD> <f> <I;CD> 1{";’(Srcf) 75 Of";’(Dst ) < BN <f> (A I 1S(Srcf)) 75
0350t o BN (f)A#£ 05PN o A[f] B. O

Corollary 5 Every filtrator of funcoids is star-separable.

Proof The set of funcoidal products of principal filter objects is a separation
subset of the lattice of funcoids. O

Theorem 20 Let A, B be small sets. If S € 2 (3 (A) x § (B)) then
{AXFPB | (AB)e S} =(domS x"PimS.

Proof If 2 € atoms 15(Y) then by the theorem [T

(N{AXFPB | (AB)eshyr={{(Ax"PB)z | (4B)eS}.
If z # (Ydom S then

V(A;B) € St (zNA# 05 A (A XFP B2 = B);
{{AXFP Bz | (A;B)e S} =imS;

if 2 = (dom S then

IAB)eS: (2N A=05AH A (AXFDP Bz =05B));
{{AxFPBYz | (A;B) €S} 3055
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So

. Aim S if =z % ()domS;
<ﬂ{A><FCDB | (A78)65}>x:{03(3) if zx[()domS§S.

From this follows the statement of the theorem. O

Corollary 6 For every Ay, A1 € §(A), Bo, B1 € §(B) (for every small sets A,
B)

(Ao % FCD BQ) N (./41 x FCD 81) = (.Ao N ./41) % FCD (BO n Bl).
Proof (.Ao XFCD Bo) N (A1 XFCD Bl) = m {Ao XFCD Bo,Al XFCD Bl} what is
by the last theorem equal to (Ag NAy) xTP (By N By). O

Theorem 21 If A, B are small sets and A € § (A) then AxFP is a complete
homomorphism from the lattice § (B) to the lattice FCD (A; B), if also A # 05(4)
then it is an order embedding.

Proof Let S € 2F(B), X € A, x € atoms 15(4),

(UaxFys) x = J{ax®n)'x | Bes}
Us ifXeodA
{OMB) if X ¢ 0A

= <.A x Feb US>*X;

N{(AXFPB)x | Bes}

B NS ifxktA
- 05B) ifz=A

= <A x Feb ﬂS>x

Thus |J(AxFP) S = AxFPLJS and N (AxFP) 5 =AxFPNS.
If A # 05(4) then obviously the function Ax"CP is injective. O

(N(AxP) $)a

The following proposition states that cutting a rectangle of atomic width
from a funcoid always produces a rectangular (representable as a funcoidal prod-
uct of filter objects) funcoid (of atomic width).

Proposition 19 If f € FCD and a is an atomic filter object on Src f then

fla=ax"P(f)a.
Proof Let X € §(Src f).

X#a= (fl) X =(fla, X=<a= (fla)X =079,
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3.10 Atomic funcoids

Theorem 22 An f € FCD (A4;B) is an atom of the lattice FCD (A; B) (for
small sets A, B) iff it is funcoidal product of two atomic filter objects.

Proof

= Let f € FCD (A4; B) be an atom of the lattice FCD (4; B). Let’s get elements
a € atomsdom f and b € atoms (f) a. Then for every X' € §(A)

X=a= (ax"Pr)x=05B C(nHa, X#ta=(ax"Polxr=bC(f)x.

So a xFP b C f; because f is atomic we have f = a xFP b,

< Let a € atoms 15| b € atoms 158 f € FCD (4; B). If b < (f)a then
=(a [f]b), f <axFPb;ifbC (f)athen VX € F(A): (X #(a= (fYX D
b), f 2 axPb. Consequently f < axFPbv f D axPb; that is a x Pb
is an atom.

O

Theorem 23 The lattice FCD (A; B) is atomic (for every small sets A, B).

Proof Let f is a non-empty funcoid from A to B. Then dom f # 05(4)| thus
by the theorem 47 in [I5] there exists a € atomsdom f. So (f)a # 05(8) thus
exists b € atoms (f) a. Finally the atomic funcoid a x P b C f. O

Theorem 24 The lattice FCD (A; B) is separable (for every small sets A, B).

Proof Let f,g € FCD(A;B), f C g. Then exists a € atoms15“) such
that (f)a C (g)a. So because the lattice §(B) is atomically separable then
exists b € atoms 158 such that (f)aNb = 055 and b C (g)a. For every
x € atoms 15(4)

(fran(axFPbya=(fyanb =085,
z#a= (f)an{axFPb)z = (f)zn0¥B) =0¥®B),

Thus (f) z N {a xFP byx = 0%(5) and consequently f =< a x P b,

(axFPbya=bC (g)a,
z#a= (axFPb)z =055 C (g)z.

Thus (a x P b) 2 C (g) x and consequently a xFP b C g.
So the lattice FCD (A4; B) is separable by the theorem 19 in [15]. O

Corollary 7 The lattice FCD (A; B) is:
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1. separable;
2. atomically separable;

3. conforming to Wallman’s disjunction property.

Proof By the theorem 22 in [15]. O

Remark 2 For more ways to characterize (atomic) separability of the lattice
of funcoids see [I5], subsections “Separation subsets and full stars” and “Atom-
ically separable lattices”.

Corollary 8 The lattice FCD (A; B) is an atomistic lattice.

Proof Let f € FCD (A; B). Suppose contrary to the statement to be proved
that (Jatoms f C f. Then it exists a € atoms f such that a N |Jatoms f =
0FCP(A:B) what is impossible. (I

Proposition 20 atoms(f U g) = atoms f U atoms g for every funcoids f,g €
FCD (4; B) (for every small sets A and B).

Proof a xfPb % fug e a[fuglbealfl]bValg be axfPb#
fVaxFP b £ g for every atomic filter objects a and b. (]

Theorem 25 For every f,g,h € FCD(4;B), R € ZFCD (A4;B) (for every
small sets A and B)

1. fn(guh)=(fNng)u(fnh);
2. fUNR=N{fU)R.

Proof We will take in account that the lattice of funcoids is an atomistic

lattice.

1. atoms (f N (g U h)) = atoms fNatoms(gUh) = atoms fN(atoms gUatoms h) =
(atoms f N atoms g) U (atoms f N atoms h) = atoms(f N g) U atoms(f Nh) =

atoms ((f Ng) U (f Nh)).
2. atoms (f U R) = atoms fUatoms (| R = atoms fU[) (atoms) R = [ ((atoms f)U) (atoms) R =
N (atoms) {fU) R = atoms () {fU) R. (Used the following equality.)
((atoms f)U) (atoms) R
{(atoms f)UA | A€ (atoms) R} =
{(atoms f)UA | IC € R:A=atomsC}
{(atoms f) U (atomsC) | C € R}
{atoms(fUC) | Ce€ R}
{atomsB | IC € R:B=fUC} =
{atomsB | Be(fUyR} =
(atoms) (fU) R.
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O
Note that distributivity of the lattice of funcoids is proved through using

atoms of this lattice. I have never seen such method of proving distributivity.

Corollary 9 The lattice FCD (A; B) is co-brouwerian (for every small sets A
and B).

The next proposition is one more (among the theorem [I2) generalization for
funcoids of composition of relations.

Proposition 21 For every composable funcoids f, g

atoms(go f) =
pxF0, | " € atoms 1367 /) > ¢ atoms 15(Dst9)
Jy € atoms 15Pst 1)+ (1 xFP 4 € atoms f Ay xFP 2z € atoms g)

Proof (z x P 2)N(gof)#0e x [gof] z < Ty € atoms 15Pt)) : (z [f]
yAy[g] 2) & Ty € atoms 15PN = (2 xFPLy)NfF£0A (yxTP2)Ng #0) (i
was used the theorem [I2)). O

Theorem 26 Let f be a funcoid.
1. X [f]Y < 3JF catoms [ : X [F| Y;

2. (X = Urecatoms s (F)X for every X € F(Src f).

Proof 1. 3F € atomsf : X [F] Y < 3Ja € §(Srcf),b € F(Dstf) :
(axFPb £ fAX [axFP b Y) < Ja € F(Src f),b € FDst f) : (a xFP b #
FAaxFD h X xFCD ) o 3F € atoms f: (F £ fAF # X xFPY) o f
X xFCP Y o X [f] V.

2. Let Y € F(Dst f). Suppose Y % (f)X. Then X [f] V; IF € atoms [ :
X [F] Yy 3F € atoms f + YV % (F)X; ¥V % Upecatoms f(F)X. So (/HX C
U reatoms £ (£)X. The contrary (f)X I | pecaoms f (£)X is obvious. O

3.11 Complete funcoids

Definition 33 I will call co-complete such a funcoid f that {f)* X is a prin-
cipal f.o. for every X € & (Src f).

Remark 3 I will call generalized closure such a function o € ZB%4 (for
some small sets A, B) that

1. ol = 0;
2.V, Je ZA:a(lUJ)=alUal.
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Obvious 13. A funcoid f is co-complete iff (f)* =1Ps*f oq for a generalized
closure a.

Remark 4 Thus funcoids can be considered as a generalization of generalized
closures. A topological space in Kuratowski sense is the same as reflexive and
transitive generalized closure. So topological spaces can be considered as a
special case of funcoids.

Definition 34 [ will call a complete funcoid a funcoid whose reverse is co-
complete.

Theorem 27 The following conditions are equivalent for every funcoid f:
1. funcoid f is complete;

2.VS € PF(Srcf),J € P (Dstf): (US [P J o 3T eS: T [frPsts
J);

3. VS e PP (Srcf),Je 2Dstf): (US[f]) JeI eSS T[f]"J);
4.¥S € PF(Sref): (HUS=U U S

5.5 € 2P (Sref): () US=U(N)") S

6. VA€ 2 (Stef): () A=U{(N" {a} | aca}.

Proof

@)= () For every S € L2 (Srcf), Je 2 (Dstf)

Sl Sy T #0565 31 € § 4SS In(f71)" g # 056G,

(10)
consequently by the theorem 53 in [I5] we have that < ft >* J is a principal
f.o.

@)= @) For every S € 23 (Srcf), J € P (Dst f) we have (f~1)" J a princi-
pal f.o., consequently

Usn() 7#£05D 3T e s 2n(f 1) J #0567,

From this follows (2I).
®)=@) (1) U S U {n
U €5}

U«
@)= ™ T £ (HUS & US [P J e 3T e S I [ftP J
T € S APt J £ (AT <P T £ U UF) S (used the theorem 53 in

[1L5]).

qa ;eUS%{HUKﬁWM | ac A
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@)=@), @=@®), B)=@3), B)=(@6l) Obvious.
O

The following proposition shows that complete funcoids are a direct gener-
alization of pre-topological spaces.

Proposition 22 To specify a complete funcoid f it is enough to specify (f)* on
one-element sets, values of (f)" on one element sets can be specified arbitrarily.

Proof From the above theorem is clear that knowing (f)* on one-element sets
(f)" can be found on every set and then the value of (f) can be inferred for
every filter objects.

Choosing arbitrarily the values of (f)" on one-element sets we can define

a complete funcoid the following way: (f)* X et U{(f) {e} | aeX}for
every X € & (Src f). Obviously it is really a complete funcoid. O

Theorem 28 A funcoid is principal iff it is both complete and co-complete.
Proof

= Obvious.

< Let f is both a complete and co-complete funcoid. Consider the relation g
defined by that 1Pt/ (g) {a} = (f)" {a} (g is correctly defined because f
corresponds to a generalized closure). Because f is a complete funcoid f
is the funcoid corresponding to g.

d

Theorem 29 If R € ZFCD (A; B) is a set of (co-)complete funcoids then |J R
is a (co-)complete funcoid (for every small sets A and B).

Proof It is enough to prove only for co-complete funcoids. Let R € #FCD (4; B)
is a set of co-complete funcoids. Then for every X € & (Src f)

<UR>*X=U{<f>*X | feR}

is a principal f.o. (used the theorem [I0]). O
Corollary 10 If R is a set of binary relations between small sets A and B then
U <TFCD(A;B)> R :TFCD(A;B) UR

Proof From two last theorems. O

Theorem 30 Filtrators of funcoids are filtered.
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Proof 1It’s enough to prove that every funcoid is representable as an (infinite)

meet (on the lattice FCD (A; B)) of some set of principal funcoids.
def

Let f € FCD(A;B), X € ZA, Y € up(f) X, g(X;Y) =44 X xFD 4B
YU A X xFCP 13(B) | For every K € ZA
B . 058 ifK =0
(g(X5Y)" K = (14 XxFP By ) KU(HA X xFP 1B k= [§ Y W0 KCX | 2 () K;
15B) K¢ X

so g(X;Y) D f. For every X € A

M) X | Yew(X}={Y | Yeuln) X}=() X;

consequently

(Mo(x:Y) | XezAyew(f) X}) XC ()X
that is
N{9(X:Y) | XePAY cup(f)'X}Cf

and finally
F={9(X;Y) | XePAYecw(f) X}.

O

Conjecture 3 If f € FCD (B;C) is a complete funcoid and R € ZFCD (A; B)
then folJR =J(fo)R.

This conjecture can be weakened:
Conjecture 4 If f is a principal funcoid from B to C and R € £FCD (A; B)
then foJR = J(fo)R.

I will denote Compl FCD and CoCompl FCD the sets of complete and co-
complete funcoids correspondingly. Compl FCD (A; B) are complete funcoids
from A to B and likewise with CoCompl FCD (A; B).

Obvious 14. Compl FCD and CoCompl FCD are closed regarding composition
of funcoids.

Proposition 23 Compl FCD (A; B) and CoCompl FCD (A; B) (with induced or-
der) are complete lattices.

Proof It follows from the theorem O

Theorem 31 Atoms of the lattice Compl FCD (A; B) are exactly funcoidal prod-
ucts of the form 14 {a} xFC b where a € A and b is an atomic f.o. on B
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Proof First, it’s easy to see that {a} xFP b are elements of Compl FCD (4; B).
Also 0FCP(AB) is an element of Compl FCD (A4; B).

14 {a} xFP b are atoms of Compl FCD (A; B) because these are atoms of
FCD (4; B).

It remains to prove that if f is an atom of Compl FCD (A; B) then f =
{a} xFP b for some o € A and an atomic f.o. b on B.

Suppose f € FCD (A; B) is a non-empty complete funcoid. Then exists
a € A such that (f)* {a} # 05B). Thus 14 {a} xFP b C f for some atomic
fo. bon B. If f is an atom then f =14 {a} xFP b, O

Theorem 32

1. A funcoid f € FCD (A; B) is complete iff there exists a function G : A —
5 (B) such that

F=J{t" {a} xFPG(a) | aeA}. (11)

2. A funcoid f € FCD (A4; B) is co-complete iff there exists a function G : B —
5 (A) such that

f=J{G (@) xFP 1P {a} | aeB}.
Proof We will prove only the first as the second is symmetric.

= Let f is complete. Then take
G(a)= U {b € atoms 15Pstf) | 44 o) xFCDp f}

and we have ([l obviously.
< Let () holds. Then G (a) = |Jatoms G («) and thus

f:U{TA{a}XFCDb | «€Srcf,beatomsG (a)}

and so f is complete.

Theorem 33

1. For a complete funcoid f there exists exactly one function F € § (Dst f)SrCf
such that
F=J{% {a} xFP F(a) | aesrcf}.
2. For a co-complete funcoid f there exists exactly one function F' € § (Src f)DSt f

such that
f= U{F(a) xFEO 4Dt fa) | ae Dst f}.
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Proof We will prove only the first as the second is similar. Let
F=J{% 7 {a} xFPF () | aesref} =15 {a} x"PG(a) | aeSwcf}
for some F,G € F (Dst £)°7. We need to prove F = G. Let 3 € Src f.
(B =J{(1% {a} X" P P () {8} | a€Stef}=F(f).
Similarly (f) {8} = G (8). So F (8) = G (8). 0

3.12 Completion of funcoids

Theorem 34 Cor f = Cor’ f for an element f of a filtrator of funcoids. (Core
part is taken for the shifted filtrator of funcoids.)

Proof From the theorem 26 in [I5] and the corollary [[0l and theorem O

Definition 35 Completion of a funcoid f € FCD (A; B) is the complete fun-
coid Compl f € FCD (A; B) defined by the formula (Compl f)* {a} = (f)* {a}
for a € Src f.

Definition 36 Co-completion of a funcoid f is defined by the formula
CoCompl f = (Compl f~)7 1.
Obvious 15. Compl f C f and CoCompl f C f for every funcoid f.

Proposition 24 The filtrator (FCD (4; B) ; Compl FCD (A4; B)) is filtered.

Proof Because the shifted filtrator (FCD (4; B) ; 2 (A x B) ;1FP(AB)) ig fil-
tered. O

Theorem 35 COIIlplf — Cor(FCD(A;B);Compl FCD(A;B)) ,f — Cor/(FCD(A;B);Compl FCD(A;B)) f
for every funcoid f € FCD (A; B).
Proof Cor(FCD(A;B);Compl FCD(A;B)) ,f — Cor/(FCD(A;B);Compl FCD(A;B)) f since (the
theorem 26 in [15]) the filtrator (FCD (A; B) ; Compl FCD (A; B)) is filtered and
with join closed core (the theorem [29)).
Let g € up(FEP(A;B);ComplFCD(AB)) ¢ Then g € Compl FCD (A; B) and g D
f. Thus g = Compl g 2 Compl f.
Thus vg c up(FCD(A:,B);Compl FCD(A;B)) f 19D Complf.
Let Vg € up(FEP(A;B);Compl FED(AB)) - C g for some h € Compl FCD (A4; B).
Then h C () FEP(AB) yp(FED(A;B);Compl FED(A;B)) ¢ — f and consequently h =
Compl h C Compl f.
Thus
Complf _ ﬂ Compl FCD(A;B) up(FCD(A;B);Compl FCD(A;B)) f _ COI,(FCD(A;B);Compl FCD(A;B)) f

O
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Theorem 36 (CoCompl f)* X = Cor (f)" X for every funcoid f and set X €
P (Sre f).

Proof CoCompl f C f thus (CoCompl f)* X C (f)" X, but (CoCompl f)* X
is a principal f.o. thus (CoCompl f)* X C Cor (f)* X.
Let aX = Cor (f)* X. Then af) = 05(Pstf) and

a(XUY) = Cor (f)* (XUY) = Cor((f)* XU(f)"Y) = Cor (f)* XUCor (f)" Y = aXUaY.

(used the theorem 65 from [I5]). Thus a can be continued till (g) for some
funcoid g. This funcoid is co-complete.
Evidently g is the greatest co-complete element of FCD (Src f;Dst f) which
is lower than f.
Thus g = CoCompl f and so Cor (f)* X = aX = (g)" X = (CoCompl f)" X.
O

Theorem 37 Compl FCD (A; B) is an atomistic lattice.
Proof Let f € ComplFCD(A;B). (f)"X = U{(f)"{z} | zeX} =

U {<f|Tsmf{x}>* {z} | ze X} =U {<f|Tsmf{x}>* X | ze X}, thus f =
U{flsrerey | @€ X} It is trivial that every flisee s, is a join of atoms
of Compl FCD (4; B). O

Theorem 38 A funcoid f is complete iff it is a join (on the lattice FCD (Src f;Dst f))
of atomic complete funcoids.

Proof It follows from the theorem 29 and the previous theorem. O

Corollary 11 Compl FCD (4; B) is join-closed.

Theorem 39 Compl(|JR) = J(Compl) R for every R € ZFCD (A;B) (for
every small sets A, B).

Proof (Compl(UR))" X =U{(UR)"{a} | aeX}=U{U{N" {a} | feR}
U{U{(N"{e} | aeXx} | feR} = U{{(Complf)"X | feR} =
(U (Compl) R)" X for every set X.

O

Corollary 12 Compl is a lower adjoint.
Conjecture 5 Compl is not an upper adjoint (in general).

Proposition 25 Compl f = {f|TSrcf{a} | a€Srcf} for every funcoid f.
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Proof Let denote R the right part of the equality to prove.
(B) {8} = U{{flrserio) (B} | a€Sref} = (/)" {8} for every §

Src f and R is complete as a join of complete funcoids.
Thus R is the completion of f. O

Conjecture 6 Compl f = f\* (2 x P U) for every funcoid f.

This conjecture may be proved by considerations similar to these in the
section “Fréchet filter” in [15].

Lemma 2 Co-completion of a complete funcoid is complete.

Proof Let f is a complete funcoid.

(CoCompl f)* X = Cor (f)" X = CorU{(f)" {z} | zeX}=U{Cor(f) {z}

U {(CoCompl f)*{z} | z € X} for every set X. Thus CoCompl f is com-
plete. (I

Theorem 40 Compl CoCompl f = CoCompl Compl f = Cor f for every fun-
coid f.

Proof Compl CoCompl f is co-complete since (used the lemma) CoCompl f is
co-complete. Thus Compl CoCompl f is a principal funcoid. CoCompl f is the
the greatest co-complete funcoid under f and Compl CoCompl f is the greatest
complete funcoid under CoCompl f. So Compl CoCompl f is greater than any
principal funcoid under CoCompl f which is greater than any principal funcoid
under f. Thus Compl CoCompl f it is the greatest principal funcoid under f.
Thus Compl CoCompl f = Cor f. Similarly CoCompl Compl f = Cor f. O

Question 16. Is Compl FCD (4; B) a co-brouwerian lattice for every small sets
A, B?

3.13 Monovalued and injective funcoids

Following the idea of definition of monovalued morphism let’s call monovalued
such a funcoid f that fo f~1 C Ii':nf?.

Similarly, I will call a funcoid injective when f 1o f C I ggg £
Obvious 17. A funcoid f is

e monovalued iff fo f~1 C [FEPDstf).

e injective iff f~1 o f C JFCPGref),

In other words, a funcoid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of funcoids.

Monovaluedness is dual of injectivity.
Obvious 18.
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1. A morphism (f;.A; B) of the category of funcoid triples is monovalued iff
the funcoid f is monovalued.

2. A morphism (f;.A; B) of the category of funcoid triples is injective iff the
funcoid f is injective.

Theorem 41 The following statements are equivalent for a funcoid f:
1. f is monovalued.

2. Va € atoms 156575 : (f) a € atoms 15Ot )y {o3Dst N1,
3.VL, T eFDstf): (fY@NT)={FNTN{f)J.

4. VL Je @ Dstf): (f1) (InJ)= () In{f 1) J.
Proof

@)= @) Let a € atoms1557f) (f)a = b. Then because b € atoms 15Pst /)
{OS(Dstf)}
(ZNJ)Nb#05Pt) o Tnp £ 05PN A T Nb#£0SPst),
alfl]ZnT)ealflINalf]T;
ZnT)[f e[ arnT [f]a
an{(fHENT) #0356 o an (f)T#05EH Nan (f1)T # 056,
(fFHEnT)=(HIn(fH)J.

@)= <f_1> aﬁ<f_1> b= <f_1> (anb) = <f_1> 08(Dst f) — 03(Sre f) for every
two distinct atomic filter objects a and b on Dst f. This is equivalent to
S((F M a (10 0= (f)(f)as b= (fof)a;=(a [fof~'] b). So
a [f ) f’l] b = a = b for every atomic filter objects a and b. This is
possible only when fo f=1 C JFCPDst /),

@=@) (/1) @ng) =N ) wEng) =N )INT | TewT,JewT} =
m{<f*1>*(mJ) | ITeupZ,Jeupd :ﬂ{(f*1>*lﬁ<f*1>*,] | IeupI,Jeupj}:
N{u 1 | rewzinn{(f )7 | Jewg} = (f)In
(f1HJ.

@)= Obvious.

~@)= ~@ @) Suppose (f)a ¢ atoms 15PtHU{05PtH} for some a € atoms A.
Then there exist two atomic filter objects p and ¢ on Dst f such that

p#qand (fya 2 pA{f)a D q Consequently p % (f)a; a % (f~')p;
aC(fyp (fof Np={)p2Hadg (fof')p¢pand
(fofM)p# 08(Dst ) So it cannot be fo f~1 C JFCPDst f)

37



O

Corollary 13 A binary relation corresponds to a monovalued funcoid iff it is
a function.

Proof BecauseVI,J € 2 (imf): (f~1) (INJ) = (f~"In{f1)" Jis true
for a funcoid f corresponding to a binary relation if and only if it is a function.
O

Remark 5 This corollary can be reformulated as follows: For binary relations
(principal funcoids) the classic concept of monovaluedness and monovaluedness
in the above defined sense of monovaluedness of a funcoid are the same.

3.14 Ty-, Ti- and T>-separable funcoids

For funcoids it can be generalized Ty-, T1- and T5- separability. Worthwhile
note that Ty and T3 separability is defined through T separability.

Definition 37 Let call T1-separable such funcoid f that for every o € Src f,
B € Dst f is true

a#B=-({a} [fI"{B}).

Definition 38 Let call Ty-separable such funcoid f € FCD (A; A) that fNf=1
is Ty -separable.

Definition 39 Let call T>-separable such funcoid f that the funcoid f~' o f
1s Th-separable.

For symmetric transitive funcoids 7T37- and Ts-separability are the same (see
theorem [3)).
Obvious 19. A funcoid f is Th-separable iff a # 5 = (f)* {a} < (f)" {8}
for every a, 8 € Src f.

3.15 Filter objects closed regarding a funcoid

Definition 40 Let’s call closed regarding a funcoid f € FCD (A; A) such filter
object A € F (Src f) that (f) AC A.

This is a generalization of closedness of a set regarding an unary operation.

Proposition 26 If 7 and J are closed (regarding some funcoid f), S is a set
of closed filter objects on Src f, then

1. TU J is a closed filter object;

2. NS is a closed filter object.
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Proof Let denote the given funcoid as f. (f) (ZUJ) = (f)ZU{(/)T CITUJ,
(HNSCSNUS))S CSNS. Consequently the filter objects ZU J and [ S are
closed. g

Proposition 27 If S is a set of filter objects closed regarding a complete fun-
coid, then the filter object | J S is also closed regarding our funcoid.

Proof (f)UUS=U{{(f))S C S where f is the given funcoid. O

4 Reloids

Definition 41 [ will call a reloid from a small set A to a small set B a triple
(A; B; F) where F € § (A x B).

Definition 42 Source and destination of every reloid (A; B; F) are defined
as

Src(A;B;F)=A and Dst(A;B;F)=B.

I will denote RLD (A; B) the set of reloids from A to B.
I will denote RLD the set of all reloids (for small sets).

Further we will assume that all reloids in consideration are small.

Reloids are a generalization of uniform spaces. Also reloids are generalization
of binary relations (I will call a reloid (A; B; F') principal when F' is a principal
filter on A x B.)

I will denote up (4; B; F) = up F for every reloid (4; B; F).

Definition 43 The reverse reloid of a reloid f is defined by the formula
(A;B;F) ' = (B A {F™" | Feupf'}).

Reverse reloid is a generalization of conjugate quasi-uniformity.

I will denote tRL(AB) f — (A; B;A%B f) for every small sets A, B and a
binary relation f C A x B.
The order (in fact a complete lattice) on RLD (A4; B) is defined by the formula

(A;B;F) C (A;B;G) < F CG.

We will apply lattice operations to subsets of RLD (A; B) without explicitly
mentioning RLD (A4; B).
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4.1 Composition of reloids

Definition 44 Reloids f and g are composable when Dst f = Srcg.

Definition 45 Composition of (composable) reloids is defined by the formula

gof={1RPE<IPL) (GoF) | Feupf,Geupg}.
Composition of reloids is a reloid.

Theorem 42 (hog)o f=ho(go f) for every composable reloids f, g, h.

Proof For two nonempty collections A and B of sets I will denote
A~B& (VKeAJLe B: LCK)AN(VKeB3Le A: L CK).

It is easy to see that ~ is a transitive relation.
I will denote Bo A={LoK|K € A,L € B}.
Let first prove that for every nonempty collections of relations A, B, C

A~B=AoC~BoC(C.

Suppose A ~ Band P € AoC thatis K € A and M € C such that P = Ko M.
JK’' € B: K/ C K because A ~ B. We have P’ = K' o M € B o C. Obviously
P’ C P. So for every P € Ao C exist P’ € Bo C such that P’ C P; the vice
versa is analogous. So AoC ~ Bo (.

up((hog)o f) ~up(hog)oupf, up(hog) ~ (uph)o (upg). By proven
above up((h o g)o f) ~ (uph) o (upg) o (up f).

Analogously up(h o (go f)) ~ (uph) o (upg) o (up f).

So up((hog)o f) ~up(ho(go f)) what is possible only if up((ho g) o f)

up(ho(go f)). O
Theorem 43 For every reloid f:

1. fof=N{ROE<hD) (FoF) | Feupf} ifSrcf =Dstf;

2. flo f={IRDGeSSeN) (F-1oF) | Feupfl;

8. foft=N{tRPOtLED) (Fop—1) | Feupf}.

Proof 1 will prove only (1) and (2) because (3) is analogous to (2).

1. It’s enough to show that VF,G € up fAH cup f: Ho H C Go F. To prove
it take H = FNG.

2. It’s enough to show that VF,G € up fAH cupf: H 1o H C G 1o F. To
prove it take H = FNG. Then H-'oH = (FNG) 'o(FNG)C G loF.

O
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Theorem 44 For every small sets A, B, C if g,h € RLD (A; B) then
1. fo(gUh)= fogU foh for every f € RLD (B;C);
2. (gUR)o f=gofUhof for every f € RLD (C; A).

Proof We’ll prove only the first as the second is dual.
By the infinite distributivity law for filters we have

m{TRLD(A;C)(FoG) | FEupf,GEUPQ}U

fogUfoh = m{TRLD(A;C)(FOH) | FGupf,HEuph}
_ m {TRLD(A;C) (Fy o G)U RO (B0 HY | Fi,Fyeupf,Geupg, H € up h}
_ ﬂ{TRLD(A;C) (F1oG)U(Fa0H)) | Fi,Fheu f,Geupg, HEeE uph}.
Obviously

N{PAO (FroG)U(FooH)) | Fi,Fa€upf,Geupg, Heuph} 2
ﬂ{TRLD(A;C) (FENE)oGYU(FyNEFy)oH)) | Fi,Foeuf,Geupg, He Uph} =
ﬂ{TRLD(A;C) (FoG)U(FoH)) | Feupf,Ge upg,HeuPh} -

ﬂ{TRLD(A;@ (Fo(GUH)) | Feupf,Geupg,HE uph}-

Because G € upg A H € uph = GU H € up(g Uh) we have

m{TRLD(A;C) (Fo(GUH)) | FGupf,GGupg,HEuph} 2
m {TRLD(A;C) (FoK) | Feupf, K eup(gU h)}
fo(gUh).

Thus we proved fogU foh 2 fo(gUh). But obviously fo(gUh) 2 fogand
fo(gUh) D fohandso fo(gUh) D fogUfoh. Thus fo(gUh) = fogU foh.
(I

Conjecture 7 If f and g are reloids, then

gof:U{GoF | F €atomsf,G € atomsg}.

Theorem 45 Let A, B, C be sets, f € RLD(A;B), g € RLD(B;C), h €
RLD (A;C). Then
gofﬁh@g%hofﬁl.

Proof gof # h < N{1RPUD (GoF) | Feupf,Geupgjn(tRPUAD ) uph #
ORLDMAD) o N { (RPN (Go F)NH) | Feupf,GEupg, HEuph} #
ORD(AC) o VF € upf,G € upg,H € uph ARPUAC) (GoF)NH) #
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ORLD(AC) o VE € up f,G € upg,H € uph : Go F % H (used properties
of generalized filter bases).
Similarly g #ho f~! < VF cupf,G €upg,H cuph: G # Ho F~L.
Thus go f A h < g% ho f~! because Go F % H < G % H o F~! by the
proposition [l O

4.2 Direct product of filter objects

Definition 46 Reloidal product of filter objects A and B is defined by the
formula

A xR g 2 () {RLDEe()PaseB) (4 x B) | A€upABeupB).

Obvious 20. 1V AxRD 4V B —4RLDWUV) (A x B) for every small sets A C U
and BCV.

Theorem 46 A xR0 B =J{a xRPb | a € atomsA,be atomsB} for ev-
ery filter objects A, B.

Proof Obviously
AXRLDBQU{Q xRPp a € atoms A, b € atoms B} .
Reversely, let

KEupU{axRLDb | aEatomsA,bEatomsB}.

Then K € up(a xRP b) for every a € atoms A, b € atoms B; K D X, x Y, for
some X, € upa, Y, € upb; K D U{Xo xY, | a€atomsA,be atomsB} =
U{X. | acatomsA} x| J{Y, | b€ atomsB} D A X B where A € up A,
B cupB; K € up(A xRP B). O

Theorem 47 If Ay, A1 € §(A), Bo, B1 € §(B) for some small sets A, B then
(.Ao XRLD Bo) N (.Al XRLD Bl) = (.Ao N Al) XRLD (Bo N Bl)
Proof

(Ao xR0 By) 1 (A; xR B))
=N {TRLD(A?B) (PNQ) | Peup(AoxRPBy),Q € up(A; xRP By)}
m {TRLD(A;B) ((AO X Bo) N (Al X Bl)) | Ap € upAo, By € up By, A € upAl, B; € upBl}
m {TRLD(A;B) ((AgN A1) x (BonNBy)) | Ao €upAy,By € upBy, A1 € up A1, By € upBl}
O {RPUB) (K x L) | K €up(AoNAy),L€up(BonBi)}
= (.Ao n .Al) XRLD (Bo n Bl)
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Theorem 48 If S € & (F(A) x §(B)) for some small sets A, B then
{AX®PB | (A;B)e S} =(domS x"P(imS.

Proof Let P=(\domS, Q=imS; 1 =N{AxPB | (A4;B)e S}

P xRLD 9 C [ is obvious.

Let F € up(P xRP Q). Then exist P € upP and Q € up Q such that
FDOPxQ.

P =P N...NP, where P; € {(up)dom S and @ = Q1 N...N Q,, where
@j € (up)im S.

PXQ:ﬂi,j(Pi x Q).

P;xQj € up (A xRP B) for some (A; B) € S. PxQ =, ;(P;xQ;) € upl.
So F € upl. |

Conjecture 8 If A € § then AxRL is a complete homomorphism from ev-
ery lattice § (B) to the lattice RLD (A; B), if also A # 0S5 then it is an order
embedding.

Definition 47 [ will call a reloid convex iff it is a join of direct products.

4.3 Restricting reloid to a filter object. Domain and im-
age

Definition 48 Identity reloid for a small set A is defined by the formula
IRLD(A) :TRLD(A;A) I4.

Definition 49 T call restricting a reloid f to a filter object A as fla = f N
(A w RLD 1{";’(Dst f))

Definition 50 Domain and itmage of a reloid f are defined as follows:
dom f = ﬂ <Tsm f> (dom)up f; im f = m <TDSt f> (im) up f.
Proposition 28 f C AxRP B < dom f C AAim f C B for every reloid f

and filter objects A € § (Src f), B € §(Dst f).

Proof

= It follows from dom(A xR B) C A Aim(A xRP B) C B.

< domfC A VAcup AIF €up f : dom F C A. Analogously
imfCBsVBecupBiGeupf:imG C B.

Let dom f C AAIm f C B, A€ up A, B € upB. Thenexist F' € up f,G €
up f such that domF C AAimG C B. Consequently F NG € upf,
dom(FNG) C A im(FNG) C Bthatis FNG C A x B. So exists
H € up f such that H C A x B for every A € uwp A, B € upB. So
fC AxRD B,
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O

Definition 51 [ call restricted identity reloid for a filter object A the reloid

IEtLD def (IRLD(BaSC(-A))) | A

Theorem 49 IRP = N {TRLD(B&SC(A)4B&SC(A)) In | AcupA} where I4 is
the identity relation on a set A.

Proof Let K € up() {TRLD(B&S"(A”B“E(A)) In | A€upAj}, then exists A €
up A such that K O I4. Then
IEXLD gTRLD(BaSC(.A);Basc(.A)) (IBase(A))m(»A w RLD 1S(Basc(.A))) gTRLD(Basc(.A);BaSC(.A))

(IBasc(.A))m(TBase(A) A xRLD 15(Base(A))) :TRLD(Base(A);Base(A)) (IBasc(.A)) N TRLD(Base(A);Base(.A))
(A % Base (A)) :TRLD(Base(.A);Base(.A)) (IBasc(.A) N (A % Base (.A))) :TRLD(Base(A);Base(.A))
N gTRLD(Basc(.A);Basc(.A)) K,
Thus K € up IElLD.
Reversely let K € up IR-P = up (IRLD(B&SC(A)) N (.A x RLD lg(BaSC(A)))), then
exists A € up A such that K € up tREP(Base(A)sBase(A) (1o 1) N (A x Base(A))) =
up TRLD(BaSC(.A);Basc(.A)) 14 C upm {TRLD(Basc(.A);Basc(.A)) 14 | Ae upA} 0

Proposition 29 (IﬁLD)_l = IR,

Proof It follows from the previous theorem. O

Theorem 50 f|4 = foIXP for every reloid f and A € § (Src f).

Proof We need to prove that fn(A xRP 18(Dst ) = fo) (4RLDSefiSref) 1, | A € up A}.

We have fo) {tRLDGrefsSref) 1, | A eup A} = N {RLGe D) (Foy) | Feupf,Acup A} =
N {TRLD(SrCf;Dst f) (Fla) | Feupf,Ac upA} =

N {RPE D) (FN(AxDst f)) | Feupf,Acup A} =N{RPESDN | Feupfin

N {ARPErefiDst ) (A x Dst f) | A€upA} = fn (AxRD SOt O

Theorem 51 (go f)|a = go (f|a) for every composable reloids f and g and

A€ F(Srcf).

Proof (go f)la=(gof)oI{® =go(foI}P)=go(fla). O

Theorem 52 f N (A xRP B) = IRP o f o IRD for every reloid f and A €

3 (Stcf), B e §(Dst /).

Proof [N (A xR B) = fn(AxRD18OstN)yn (186Gef) RD By — 4N
(1857 £) xRDBY) — (foIRLD)N(15(Sref) xRLDR) ((f o IE\"D)_I N (18(Sre ) »RLD B)—l)fl _

((IEXLD o f*l) N (B ><RLD IS(Srcf)))_l — (IE\LD o f*l ° IELD)71 — IBRLDOfOIE‘LD.
O
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Theorem 53 fliswes(q} =15ref {a} xRPim (f|TSrcf{a}) for every reloid f and
a € Sre f.

Proof First,
im (Pl s o)
APy (i) up (flyere s ay)
VG0 Gmjup (70 (1577 {a) xRP13E0) ) =
N {5 im (F ({a} xDstf)) | Feupf} =
N> im (Fleey) | Feupf}.
Taking this into account we have:
1317 {a} xR i (flyswe s () =
m{TRLD(Srcf;Dstf) ({a} xK) | K €upim flTSrCf{a} }
M {RPEIDD (0} xim (Flgoy)) | Feup f)
N {20 (Ply) | Pews} =
ﬂ {TRLD(Srcf;Dst D (Fn({a} x Dst f)) Feup f}
M {RPEIDHD | Feup fhn tROEID ({a} x Dst f

Fn 4RLD(Sre £iDst ) ({a} x Dst f
flseesgay-

)
)

4.4 Categories of reloids

I will define two categories, the category of reloids and the category of
reloid triples.
The category of reloids is defined as follows:

e Objects are small sets.

e The set of morphisms from a set A to a set B is RLD (A; B).
e The composition is the composition of reloids.

e Identity morphism for a set is the identity reloid for that set.

To show it is really a category is trivial.
The category of reloid triples is defined as follows:
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e Objects are filter objects on small sets.

e The morphisms from a f.o. A to a f.o. B are triples (f;.4;B) where
f € RLD (Base (A) ;Base(B)) and dom f C AAim f C B.

e The composition is defined by the formula (g; B; C)o(f; A; B) = (g o f; A;C).
e Identity morphism for an f.o. A is IR-P.

To prove that it is really a category is trivial.

4.5 Monovalued and injective reloids

Following the idea of definition of monovalued morphism let’s call monovalued
such a reloid f that fo f=! C Ii'fr';?..

Similarly, I will call a reloid injective when f~'o f C I E(';n'? I
Obvious 21. A reloid f is

e monovalued iff fo f~1 C [RLD(Dstf).

e injective iff f=1 o f C IRLD(Sref),

In other words, a funcoid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of funcoids.

Monovaluedness is dual of injectivity.
Obvious 22.

1. A morphism (f;.A4;B) of the category of reloid triples is monovalued iff
the reloid f is monovalued.

2. A morphism (f;.A4;B) of the category of reloid triples is injective iff the
reloid f is injective.

Theorem 54

1. A reloid f is a monovalued iff it exists a function (monovalued binary rela-
tion) F € up f.

2. A reloid f is a injective iff it exists an injective binary relation F' € up f.

3. A reloid f is a both monovalued and injective iff exists an injection (a mono-
valued and injective binary relation = injective function) F € up f.

Proof The reverse implications are obvious. Let’s prove the direct implications:
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1. Let f is a monovalued reloid. Then fo f~! C JRLP(Dst f) Qo exists
heup(fof™) = upﬂ {TRLD(DS”;DS”’) (F o Fﬁl) | Feup f}

such that h C IRt ) Tt’s simple to show that {F oF~t | Feup f}
is a filter base. Consequently it exists F' € up f such that F o F~! C Ipg s
that is F' is a function.

2. Similar.

3. Let f is a both monovalued and injective reloid. Then by proved above
there exist F,G € up f such that F' is monovalued and G is injective. Thus
FNG e up f is both monovalued and injective.

O

Conjecture 9 A reloid f is monovalued iff

Vg € RLD (Src f;Dst f) : (¢ C f = 3A € F(Srcf) : g = fla).

4.6 Complete reloids and completion of reloids

Definition 52 A complete reloid is a reloid representable as join of direct
products 14 {a} xRL b where o € A and b is an atomic fo. on B for some
small sets A and B.

Definition 53 A co-complete reloid is a reloid representable as join of direct

products axRP 1B {8} where B € B and a is an atomic f.o. on A for some
small sets A and B.

I will denote the sets of complete and co-complete reloids correspondingly
as Compl RLD and CoCompl RLD.
Obvious 23. Complete and co-complete are dual.

Theorem 55

1. A reloid f € RLD (A; B) is complete iff there exists a function G : A — § (B)
such that
f= U (14 {a} xRP G () | a€A}. (12)

2. A reloid f € RLD (A; B) is co-complete iff there exists a function G : B —
5 (A) such that

f=U{G(a)><RLDTB {a} | a€B}.

Proof We will prove only the first as the second is symmetric.
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= Let f is complete. Then take
G(a) = U {b € atoms 15(Pst ) | St f {a} xRLDp C f}
and we have ([I2]) obviously.
< Let (I2) holds. Then G (a) = |Jatoms G («) and thus
f= U {157/ {a} x®Pb | a€Srcf,beatomsG ()}

and so f is complete.

Obvious 24. Complete and co-complete reloids are convex.
Obvious 25. Principal reloids are complete and co-complete.

Obvious 26. Join (on the lattice of reloids) of complete reloids is complete.

Corollary 14 ComplRLD (with the induced order) is a complete lattice.

Theorem 56 A reloid which is both complete and co-complete is principal.
Proof Let f is a complete and co-complete reloid. We have
F=J% @} x®PG(a) | aeswef} and f=|J{H ()P {5} |

for some functions G : Srcf — §(Dst f), H : Dst f — F(Src f). For every
a € Src f we have

G (o)
imfhs:rcf{a} =
im (fﬂ (TSrcf {a} xRLP 1S(Dstf)>) -
imU {(H (8) « RLD TDStf {ﬂ}) N (TSrcf {a} « RLD 15(Dstf)> | Be Dstf} —
imU{(H(ﬂ)ﬁTsrcf' {a}) «RLD TDStf{ﬂ} | ﬂEDStf} _

. Src f RLD 4Dst f 13z Sre [
lmU{<{ gRLD(Sg?gDitf) e ;fHEg; ﬁsmf }ﬁ ) | BeDstf } -

1mU {TSrcf {Oé} ><RLD TDstf {ﬁ} | ﬁ € Dst qu(B) }\;TSrCf {a}} =
im J {1%PED (0 6)} | B e Dstf H(8) #1% {a}} =
UG (8) | BeDstfH (5) A5 {a}}.

* the theorem 40 from [I5] was used.

Thus G () is a principal f.o. that is G (o) =P/ g (a) for some g : Src f —
Dst f; 157¢f {a} xR0 G (a) =tRPErefiDstf) (fa} x g (a)); f is principal as a
join of principal reloids. O
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Conjecture 10 Composition of complete reloids is complete.

Theorem 57

1. For a complete reloid f there exists exactly one function F € § (Dst f)SrCf
such that
F=J{% {a} xRP F(a) | aeSwcf}.
2. For a co-complete reloid f there exists exactly one function F € § (Src f)DSt f
such that '
f= U{F(a) xRD 4D Lo} | aeDstf}.
Proof We will prove only the first as the second is similar. Let
F=U{* 7 {a} x"P F(a) | aeSref}={J{t7 {a} x"PG(a) | a€Srcf}
for some F, G € § (Dst f)SrCf. We need to prove F' = G. Let 5 € Src f.
£ (TSrcf (B} xRLD 3 (Dst f>) = (theorem 40 in [I5])
URLD {(TSrcf {a} « RLD F(a)) ARLD (TSrcf (8} x 15(Dstf)> | ae Srcf} _
el {8} xR F (8).
Similarly fN(157f {8} x 15Dt ) =4Sref 31X RDG (8). Thus 157 F {3} xRLD
F(B) =13/ {8} xRP G (B) and s0 F (B) = G (B). 0
Definition 54 Completion and co-completion of a reloid f € RLD (4; B)

are defined by the formulas:

Complf — Cor(RLD(A;B);Compl RLD(A;B)) f and COCOHlplf — Cor(RLD(A;B);CoCompl RLD(A;B)) f

Theorem 58 Atoms of the lattice Compl RLD (A; B) are exactly direct products
of the form 14 {a} xR b where a € A and b is an atomic f.o. on B.

Proof First, it’s easy to see that 14 {a}xPb are elements of Compl RLD (4; B).
Also ORLP(4:B) g an element of Compl RLD.

14 {a} xRP b are atoms of Compl FCD because these are atoms of RLD.

It remains to prove that if f is an atom of Compl RLD (A; B) then f =14
{a} xRPp for some o € A and an atomic f.o. b on B.

Suppose f is a non-empty complete reloid. Then 14 {a} xRP b C f for
some o € A and atomic f.o. b on B. If f is an atom then f =14 {a} x"P 5. O

Obvious 27. Compl RLD(A; B) is an atomistic lattice.

Proposition 30 Compl f = {fh\Srcf{a} | a€Srcf} for every reloid f.
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Proof Let’s denote R the right part of the equality to be proven.
That R is a complete reloid follows from the equality

Flisee sy =177 {a} xRP im (flyseeray) -

The only thing left to prove is that ¢ C R for every complete reloid g such that

gcf.
Really let g is a complete reloid such that g C f. Then

g=U{TsrC-f{a}xRLDG(a) | a€Srcf}

for some function G : Src f — § (Dst f).
We have 15f {a} x®P G (a) = glysrer(ay C flysrcr{ay. Thusg C R, O

Conjecture 11 Compl f N Compl g = Compl(f N g) for every reloids f and g.

Theorem 59 Compl (| R) = |J (Compl) R for every set R € ZRLD (4; B) for
every small sets A, B.

Proof

Compl (U R)
U { (U R) ltafay | a€ A} = (theorem 40 in [15])
U{U{fHA{a} | acd)l | feR} =

U (Compl) R.

Lemma 3 Completion of a co-complete reloid is principal.

Proof Let f is a co-complete reloid. Then there is a function F : Dst f —
F (Src f) such that

f=U{F(a)xRLD Dt fa} | aeDstf}.
So
Compl f

U{(U{F wRLD 4Dstf fo1 | aeDstf}) lhseergay | BeSrcf}

U{(U{F @ x®P 424 fa} | aeDstf})n (157 {8} xRP15CD) | gesref}
U{U{(F @) x®P4P7 fay) 1 (157 {8} xRP13OD) | aeDstf} | BeSref}
U{U7 {8y x®2 4P/ {a} | aeDstf} | BeSicf 15 {8} CF(a)}.
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* theorem 40 in [I5].
Thus Compl f is principal. O

Theorem 60 Compl CoCompl f = CoCompl Compl f = Cor f for every reloid
f-

Proof We will prove only Compl CoCompl f = Cor f. The rest follows from
symmetry.
From the lemma Compl CoCompl f is principal. It is obvious Compl CoCompl f C
f- So to finish the proof we need to show only that for every principal reloid
F C f we have F' C Compl CoCompl f.
Really, obviously F' C CoCompl f and thus F' = Compl F' C Compl CoCompl f.
O

Question 28. Is Compl RLD (A4; B) a distributive lattice? Is Compl RLD (4; B)

a co-brouwerian lattice?

Conjecture 12 Let A, B, C are small sets. If f € RLD (B;C) is a complete
reloid and R € ZRLD (A; B) then

folJR=J(fo) R

This conjecture can be weakened:

Conjecture 13 Let A, B, C are small sets. If f € RLD (B;C) is a principal
reloid and R € ZRLD (A; B) then

fol JR=J(fo) R.

Conjecture 14 Compl f = f \* (Q5¢f xR 18Dt for every reloid f.

5 Relationships between funcoids and reloids

5.1 Funcoid induced by a reloid

Every reloid f induces a funcoid (FCD)f € FCD (Src f;Dst f) by the following
formulas (for every X' € §(Src f), Y € §F(Dst f)):

X [(FCD)f] Y < VF € up f : X [tFCPSrefiDstf) p]
(FCD)fY X = {<TFCD(Srcf;Dst ) F> X | Fe upf} )

We should prove that (FCD)f is really a funcoid.
Proof We need to prove that

X [(FCD)f1 Y & Y N{((FCD)f) X # 05t )) o x 0 ((FCD) f~1) ¥ # 05t 1),

o1



The above formula is equivalent to:
VEeupf:X {TFCD(Src f:Dst ) F} y o
yn ﬂ {<TFCD(Srcf;Dst i) F> X | Fe upf} + 08MDstf)

xn ﬂ {<TFCD(Src £:Dst f) F—1> Y | Fe upf} £ 8 (Sre )

We have ymm {<TFCD(SrC f;Dst f) F> X | Fe upf} — n {y N <TFCD(Srcf;Dst ) F> Py | Fe upf}

Let’s denote W = {y n (1FPE<iDstH) py x| Feupf}.

VF € upf X [TFCD(Srcf;Dst f) F} Y& VF e upf . ym<TFCD(Srcf;Dst f) F> X 7&
03 (Dst ) & S Dst ) & P/,

We need to prove only that 05Ps/) & W o OW # 05(st/) (The rest
follows from symmetry.)

This follows from the fact that W is a generalized filter base.

Let’s prove that W is a generalized filter base. For this it’s enough to prove
that V = {<TFCD(SrCf§DSt £ F> X | Feup f} is a generalized filter base. Let
A,B €V that is A = (1FPErefiDst)) py x B = (4FDE<fDst ) ) X where
P,Q €up f. Then for C = <TFCD(S“ fiDst f) (PN Q)> X is true both C € V and
C C A /B. SoV is a generalized filter base and thus W is a generalized filter
base. O

Proposition 31 (FCD) tRLD(AB) f —4FCD(AB) £ for epery small sets A, B
and binary relation f C A X B.

Proof X [(FCD) tRPUB) f] Y o VF € up ARIDAB) f . x [1FOAB) ]
Y X [HFPUB) 1Y (for every X € F(A), Y € §(B)). 0

Theorem 61 X [(FCD)f] Y < (X xRP Y)Y £ f for every f € RLD and X €
F(Srcf), YV e F(Dstf).

Proof

VFeupf,Peup(X x"PY): P£F
VEcup f,XeupX,YeuplV: X xY)%£F

VF €upf, X upX,Y €upy itSref x [{FPE s f) pl4Dscs y

(X xR Y) £ f

VFeupf:X [TFCD(Src £iDst f) F} v
X [(FCD)f] Y.

r e vt

Theorem 62 (FCD)f = (N (1FPE</DtN N up f for every reloid f.
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Proof Let a be an atomic filter object on Src f.

((FCD)fya = N {{(1FPErefiDstf) Fyq | F €upf} by the definition of
(FCD).

<m <TFCD(Src f;Dst f)> upf> a = m {<TFCD(Src f;Dst f) F> a | Fe upf} by
the theorem [I7

So ((FCD)f)a = (N (1FPErefiDstH) up ) a for every a. O

Lemma 4 For every two filter bases S and T of binary relations on U x V for
some small sets U, V and every set A C U

ﬂ<TRLD(U;V)>S:ﬂ<TRLD(U;V)>T:>ﬂ{TV (FYA | FeSt={t"(&A | GeT}.

Proof Let ) (1RPWV)) g = N (4RLDWVIN T,

First let prove that {(F) A | F € S}isafilterbase. Let X, Y € {(F)A | F € S}.
Then X = (Fx)A and Y = (Fy)A for some Fx,Fy € S. Because S
is a filter base, we have S 3 Fyz C Fx NFy. So (Fz)A C XNY and
(Fz)Ae {{F)A | FeS}. So{(F)A | F €S} is afilter base.

Suppose X € up( {1tV (F)A | F € S}. Thenexists X' € {(F)A | FeS}
where X D X' because {(F) A | F € S} is a filter base. That is X' = (F) A
for some ' € S. There exists G € T such that G C F because T is a filter
base. Let Y/ = (G)A. We have Y/ C X' C X;Y' € {{(G)A | GeT}
YeuwN{tV(GA | GeT}; X cuwpN{tV(G)A | GeT}. The re
verse is symmetric. O

Lemma 5 {GoF | Feupf,Gecupg} is a filter base for every reloids f
and g.

Proof Let denote D ={GoF | Fecupf,Geupg}. Let Ac DAB¢€D.
Then A = GaoFaNB = GpoFp forsome Fa, Fg € up f and Ga4,Gp € upg. So
ANB D (GANGg)o(FaNFg) € D because FANFp € up f and GAaNGp € upg.

[l

Theorem 63 (FCD)(go f) = ((FCD)g) o ((FCD)f) for every composable reloids

f andg.
Proof
(FCD)(go /)" X = ({t™"9(H)X | Heupgof)}
= N{P x| Hew{1RPEIP) (GoF) | Feuf,Geugl).
Obviously

N {1FPE/P9) (GoF) | Feuwf.Geupg) =

ﬂ <TRLD(Src £:Dst g)> upﬂ {TRLD(Srcf;Dst 9) (GoF) | Feulf,Ge upg} :
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from this by the lemmal (taking in account that {Go F | F €up f,G € upg}
and up () {TRLD(STC Fibste) (GoF) | Feupf,Ge up g} are filter bases)

ﬂ{TDstg (HYX | He upﬂ{TRLD(Srcf;Dstg) (GoF) | Feupf,Ge upg}} =
{9 (GoF)X | Feupf,Geupg}.
On the other side

(((FCD)g) o ((FCD)f))" X ((FCD)g) ((FCD)f)" X

(FCD)g) (V{17 (F) X | Feupf}
_ ﬂ {<TFCD(Sng;Dstg) G> ﬂ {TDstf <F>X | Fe upf} | Ge upg} )

Let’s provethat {(F) X | F €up f}isafilterbase. f A, Be {{(F)X | Fecupf}
then A = (Fy) X and B = (F3) X where F1,Fhb eupf. ANBD (FiNF) X €
{{FYX | Feupf}. So{(F)X | F €upf}isreally a filter base.

By the theorem [§ we have

<TFCD(SrC!];Dst g) G> m {TDstf <F> X | Fe upf} _ ﬂ {TDstg <G> <F> X | Fe upf} '
So continuing the above equalities,
N{N P @ (X | Fews} | Geug)

m{TDstg<G><F>X | Feupf,GGupg}
m{TDstg<GOF>X | Feupf,Geupg}.

(((FCD)g) o ((FCD)f))" X

Combining these equalities we get ((FCD)(g o f))* X = (((FCD)g) o ((FCD)f))" X
for every set X. O

Corollary 15
1. (FCD) f is a monovalued funcoid if f is a monovalued reloid.
2. (FCD) f is an injective funcoid if f is an injective reloid.

Proof We will prove only the first as the second is dual. Let f is a monovalued
reloid. Then fo f=! C IREPDstH, (FCD) (fo f~1) C IFCPDstH: (FCD) f o
((FCD) f)~' C IFCPMst /) that is (FCD) f is @ monovalued funcoid. O

Proposition 32 (FCD)IRC = IFP for every f.o. A.
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Proof Recall that IR0 = N {4Base(A) [, | AeupA}. Forevery X,) €
§ (Base (A)) we have:
X [(FCD)IE‘LD] Ve XXRLDy %A IEXLD S VYAe upA . XXRLDy XTRLD(BaSC(A);BaSC(.A))
Iy & VA € upA :+ X [fFDBase(A)Base(A) 1,1 ) « VA € up A : X' N
Y #Base 4 o XNy £ Ae X [IE\CD} Y (used properties of generalized
filter bases). O

Proposition 33 (FCD)(A xRP B) = A xFP B for every fo. A and B.

Proof X [(FCD)(A xR'P B)] ¥ < VF € up(AxRPB) : x [FCD(Base(A)iBase(B)) p]
Y (for every X, € F).

Evidently VF € up(A xR0 B) : x [tFCDBase(A)Base(B) p] ) =
VA€ upA,B € upB: X [{FPBase(A)sBase(B)) (4 x B)| Y.

Let VA € up A, B € upB : X [{FCPBase(A)Base(B) (4 » B)] Y. Then if
F € up(A xRP B), there are A € up. A, B € upB such that ' O A x B. So
X [TFCD(Basc(.A);BaSC(B)) F} V.

We proved VF € up(A xR0 B) : x [tFCDBase(A)Base(B)) F] 3 « VA €
up A,B c upB - X [TFCD(Basc(.A);Basc(B)) (A X B)} ).

Further VA € up A, B € up B : X [tFCcDBase(A)iBase(B)) (4 x B)] Y < VA €
up A, B € upB : (X #fBaseth) AN Y #£Base(B) B) o X # ANY # B <
X [AXFPB] Y.

Thus X [(FCD)(A xRP B)| Y < X [AxFPB] Y. O

Proposition 34 dom(FCD)f = dom f and im(FCD)f = im f for every reloid
f-

Proof im(FCD)f = ((FCD) f) 156 = N\ {(#PstS (F) (Srcf) | Feupf} =

NP imF | Feup s} = (1P7) (i) up f = i f.
dom(FCD) f = dom f is similar. O

Proposition 35 (FCD)(fN(AxRLB)) = (FCD)fN(AxFPL B) for every reloid
f and A€ F(Srcf) and B € §F(Dst f).

Proof (FCD)(fN(AxRPB)) = (FCD)(I§Po foIRP) = (FCD)IE'Po(FCD)fo
(FCD)IRP = 15D o (FCD) f o IFEP = (FCD) f N (A x"<P B). O

Corollary 16 (FCD)(f|4) = ((FCD)f)|.a) for every reloid f and f.o. A.

Proposition 36 ((FCD) f) X =im (f|x) for every reloid f and f.o. X.
Proof im (f|x) = im (FCD) (f|x) = im(((FCD)f)|x) = ((FCD) f) X 0
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5.2 Reloids induced by funcoid

Every funcoid f € FCD (4; B) induces a reloid from A to B in two ways, in-
tersection of outward relations and union of inward direct products of filter
objects:

(RLD)out f = M (1RLAE) up f;
U{AXRPB | AeF(A),BeF(B),AxFPBCf}.

(RLD);n f 4

Theorem 64 (RLD)i,f =J{a xRPb | a € atoms1356h b e atoms15PtS) ¢ xFDpC f1.
Proof It follows from the theorem O
Remark 6 It seems that (RLD);, has smoother properties and is more im-

portant than (RLD)oyu. (However see also the exercize below for (RLD);, not
preserving identities.)

Proposition 37 (RLD)gy 1FPAB) f —ARD(AE) £ for every small sets A, B
and binary relation f C A X B.

Proof (RLD)out TFCD(A;B) f _ ﬂ<TRLD(A;B)>up TFCD(A;B) f :TRLD(A;B)
min up /I\FCD(A;B) f :TRLD(A;B) f O

Surprisingly a funcoid is greater inward than outward:

Theorem 65 (RLD)outf C (RLD)in f for every funcoid f.

Proof We need to prove

m<TRLD(Srcj»;Dstf)>upfQU{AXRLDB | A,BES“AXFCDBgf}'

Let
Keuwl|J{AX"PB | ABe§ AxFPBCf}.

Then
K = ROGresDD | J{x, xYs | ABeF Ax"PBC [}
_ U {TRLD(Srcf;Dstf) (XaxVs) | ABeF A <FCD 3 f}
2 f
where X4 € up A, Y € upB. So K € up f; K € up (| (tRPEHDs N yp f.
]
Theorem 66 (FCD)(RLD);,f = f for every funcoid f.
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Proof For every sets X € & (Src f) and Y € & (Dst f)

X [(FCD)(RLD)in f]" Y
(1577 X xRP AP y) £ (RLD)in f

ARLD(Sre £iDstf) (X % V) % U {a xR0 p | a € atoms 156G b e atoms 15PstF) ¢ xFPp C f}

Ja € atoms 1557 p € atoms 15PHS) + (¢ xFP p € fARDEre DU (X 5 v) #£ (a xRP b))
Ja € atoms 1557 b € atoms 15O« (a [f] bAa S5 X AD AP )
XY,
* theorem 53 in [I5].
Thus (FCD)(RLD);, f = f. O

Remark 7 The above theorem allows to represent funcoids as reloids.

Obvious 29. (RLD);,(A xFP B) = A xRLD B for every f.o. A, B.

Conjecture 15 (RLD)oy [P = IRD for every f.o. A.
Exercise 1 Prove that generally (RLD)ind"° # 15,

Conjecture 16 dom(RLD);,f = dom f and im(RLD), f = im f for every fun-
coid f.

Proposition 38 dom (f|4) = AN dom f for every reloid f and fo. A €
5 (Srcf).
Proof dom (f|4) = dom (FCD) f|4 = dom ((FCD) f)|4 = AN dom (FCD) f =

ANdom f. O
Theorem 67 For every composable reloids f, g:
1. Ifim f D domg then im (go f) =img.
2. Ifim f C domg then dom (g o f) = dom f.
Proof
1. im(go f) = im (FCD) (g o f) = im ((FCD) g o (FCD) f) = im (FCD) g = im g.
2. Similar.
d

Conjecture 17 (RLD), (go f) = (RLD),, g o (RLD),, f for every composable
funcoids f and g.
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Theorem 68 a xR b C (RLD), f < a xFP b C f for every funcoid f and
atomic f.o. a and b on the source and destination of f correspondingly.

Proof axfFPbC f=axRPpC (RLD),,, f is obvious.
a xRP b C (RLD), f = a xR b % (RLD). f = a [(FCD) (RLD),. f] b =
alflb=ax"PbC f. O

A conjecture stronger than the last theorem:

Conjecture 18 If A xRP B C (RLD),, f then Ax"P B C f for every funcoid
f and A€ F(Srcf), BeF(Dstf).

5.3 Galois connections of funcoids and reloids

Theorem 69 (FCD) : RLD (A4; B) — FCD (4; B) is the lower adjoint of (RLD)in
FCD (A; B) — RLD (A; B) for every small sets A, B.

Proof Because (FCD) and (RLD)j, are trivially monotone, it’s enough to prove
(for every f € RLD (4; B), g € FCD (4; B))

f C (RLD)i(FCD) f and(FCD)(RLD )ing C g.
The second formula follows from the fact that (FCD)(RLD)ing = g.

U {a xRPp | g € atoms 15 b € atoms 15F) ¢ xFP p C (FCD f} =

U {a xR0 p | acatoms 15 b € atoms 15B) q [(FCD) f b} =

U {a xR0 p | aeatoms1¥ b € atoms 155 (a xRP p) f} )
U {p € atoms(a xRPb) | a € atoms 15 b € atoms 155 p £ f} =
U {p € atoms 1R-PA:B) f} =
Ute | peatomss} =
(]

Corollary 17
1. (FCD)Y S =U((FCD)) S if S € ZRLD (4A; B).
2. (RLD)in S =N {(RLD)in) S if S € LFCD (4; B).

Proposition 39 (RLD),(f N (AxFP B)) = ((RLD)in f) N (A xRP B) for every
funcoid f and f.o. A€ F(Srcf) and B € F(Dst f).
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Proof (RLD)i(fN(AxFPB)) = (RLD)infN(RLD)in(AXFPLB) = ((RLD)in f)N
(A xRLD B3y, 0

Corollary 18 (RLD)iy(f].4) = ((RLD)inf)|a for every funcoid f and f.o. A.
Conjecture 19 (RLD);, is not a lower adjoint (in general).

Conjecture 20 (RLD)oyt, is neither a lower adjoint nor an upper adjoint (in
general).

See also the corollary 23] below.

6 Continuous morphisms

This section uses the apparatus from the section “Partially ordered dagger cat-
egories”.
6.1 Traditional definitions of continuity

In this section we will show that having a funcoid or reloid 1 f corresponding
to a function f we can express continuity of it by the formula 1T fou C vo T f
(or similar formulas) where u and v are some spaces.

6.1.1 Pre-topology

Let p and v are funcoids representing some pre-topologies. By definition a
function f is continuous map from p to v in point a iff

Ve € up (v)" {fa}30 € up ()" {a} : (f)d C e.

Equivalently transforming this formula we get:

Ve € up ()" {fa} : (1FEDSmDI) £y (1) 457en g} C
(FFCORD) £ ) 450 {a} € (1) {fa}:
<TFCD(Srcu;Dst v) f> <M> TSTCM {a} C <I/> <TFCD(Srcu;Dst v) f> TSTCM {a};
<TFCD(Srcu;Dst v) f ° M> TSYCH {a} C <I/O TFCD(Srcu;Dst v) f> TSYCH {a}

So f is a continuous map from p to v in every point of its domain iff

TFCD(SrC ;Dst v) f FCD(Src u;Dst v) f

ouCwot
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6.1.2 Proximity spaces

Let 1 and v are proximity (nearness) spaces (which I consider a special case of
funcoids). By definition a function f is a proximity-continuous map (also called
equivicontinuous) from x4 to v iff

VX € Z(Srep),Y € 2 (Dstp): (X [ Y = ()X [v]" (fHY).

Equivalently transforming this formula we get (writing 1 instead of AFCD(Sre u;Dst v)
for brevity):

VX € P (Srep),Y € 2 Dstp): (X [p]" Y = ()Y N () (f) X # 05Dstv)).
VX € P (Srep),Y € 2 (Dstp): (X [ Y = (£)Y N (o 1 )7 X # 05®=2));
VX € 2 (Step),Y € P (Dstp) i (X [u]" Y = X [vo 1 J]" (/)Y);

(

VX € P (Step),Y € 2 (Dstp): (X (1 Y = ()Y [(VOTf)- } X);
VX € P (Srep),Y € 2 (Dstp): (X [u]" Y = (f)Y [m Ntev ] x);
VX € 2 (Step),Y € 2 (Dstp) : (X [u]" ¥ =156 x 0 <<¢ n > <f>Y # 08¢ Srcm)

VX € P (Stcp),Y € P (Dst p) : (X (W] Y =186em xn <(T )" ot f
VX € P (Srep),Y € 2 (Dstp) - (X W'Y =Y [(Tf
VXE@(Src,u),YGQ(Dstu):(X[u]*Y:>X[( oyon] Y),
pC () oot f.
?fo a function f is proximity-continuous iff yu C (1FCP(SremDstr) £) ™o, 0 $FCD(Sre uDst )
6.1.3 Uniform spaces

Uniform spaces are a special case of reloids.
Let p and v are uniform spaces. By definition a function f is a uniformly
continuous map from p to v iff

Ve € uprdd € up uV(x;y) € 0 : (fa; fy) €€
Equivalently transforming this formula we get:
Ve € upv3é € up pu¥(zy) €6 : {(fz; fy)} C &
Ve e uprd € uppv(z;y) €6 : fo{(zsy)lof ' Ce
Ve cuprvdd €upp: fodo f~ 1 Ce
Ve € up v ARLPDst wDstw) £6 4,6 (TRLD(Dst w;Dst v) f)*l CARLD(Srew;Dst ) ¢
ARLD(Dst iDst ) £ 6 6 (TRLD(Dst p;Dst v) f)—l Cu.

. . . . . . . -1
So a function f is uniformly continuous iff fRED(DstwDst) fo,0 (4RLD(Dst wiDstv) )%

V.
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6.2 Our three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas hid-
ing the complexity of traditional epsilon-delta notation behind a smart algebra.
Let’s summarize these three algebraic formulas:

Let 4 and v are endomorphisms of some partially ordered precategory. Con-
tinuous functions can be defined as these morphisms f of this precategory which
conform to the following formula:

feC(u;v) & f € Mor(Obu; Obv) A fouCuro f.

If the precategory is a partially ordered dagger precategory then continuity also
can be defined in two other ways:

feC(uv) < feMor(Obu;Obv)ApC flovof;
fed (wv) < feMor(Obu;Obv)A fouofiCu.

Remark 8 In the examples (above) about funcoids and reloids the “dagger
functor” is the inverse of a funcoid or reloid, that is fT = f=1.

Proposition 40 FEvery of these three definitions of continuity forms a sub-
precategory (subcategory if the original precategory is a category).

Proof

C Let f € C(i;v), g € Cv;m). Then fou Cvof, govCmog;gofoucC
govofCmogof.SogofeC(um). lobu € C(w; p) is obvious.

C' Let f € C'(u;v), g € C'(v;m). Then uC flovof,vCyglomog;
pCfloghomogof; pCi(gof)fomo(gof).
SogofeC(wm). lobu € C'(u; 1) is obvious.
C" Let f € C"(u;v), g€ C"(v;m). Then fouo fI Cv, govogh Cm;
gofopoflogh Cm (gof)opo(gof)iCm
Sogo feC'(u;m). lob, € C”(u; p) is obvious.

O

Proposition 41 For a monovalued morphism f of a partially ordered dagger
category and its endomorphisms p and v

fel(yv)=feClyy)=feC' ().
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Proof Let f € C'(u;v). Then pu C flovof; fou C foffovof C lpg povof =
vo f; feCu;v).

Let f € C(u;v). Then fouCwof; fouofi Cvofofl Crolpyy=uw;
fe (). O

Proposition 42 For an entirely defined morphism f of a partially ordered dag-
ger category and its endomorphisms pu and v

fed ()= feCluv)=feC ().

Proof Let f € C"(u;v). Then fopuo fI C vy fopuofiof Crvof;
fopolswey Cvof;fouCuvolf; feClyw).
Let f € C(u;v). Then fou Cvof; flofou C flovof; lgweou C flovof;
pCflovofi feC (). O
For entirely defined monovalued morphisms our three definitions of continu-
ity coincide:

Theorem 70 If f is a monovalued and entirely defined morphism then
fel(mv) e feClyy) & fel ().

Proof From two previous propositions. O

The classical general topology theorem that uniformly continuous function
from a uniform space to an other uniform space is near-continuous regarding the
proximities generated by the uniformities, generalized for reloids and funcoids
takes the following form:

Theorem 71 If an entirely defined morphism of the category of reloids f €
C"(u;v) for some endomorphisms p and v of the category of reloids, then

(FCD)f € C'((FCD)u; (FCD)v).

Exercise 2 I leave a simple exercise for the reader to prove the last theorem.

6.3 Continuity of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semi-
group of funcoids or semigroup of reloids regarding the composition.) Consider
also some lattice (lattice of objects). (For example take the lattice of set
theoretic filters.)

We will map every object A to identity element I4 of the semigroup (for
example identity funcoid or identity reloid). For identity elements we will require

1. Ipolp = Iang;

2. foly C fiIaofCf.
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In the case when our semigroup is “dagger” (that is is a dagger precategory) we
will require also (14)" = I4.

We can define restricting an element f of our semigroup to an object A by
the formula f|4 = fol4.

We can define rectangular restricting an element p of our semigroup to
objects A and B as Ig oo I4. Optionally we can define direct product A x B
of two objects by the formula (true for funcoids and for reloids):

uN(AxB)=Igopoly.

Square restricting of an element p to an object A is a special case of rectan-
gular restricting and is defined by the formula I4 o o I4 (or by the formula
pN(Ax A)).

Theorem 72 For every elements [, u, v of our semigroup and an object A
1. feC(v)= flac Clgopoly;v);

2. feC(uv)= flaeClsopola;v);

3. feC(uv)= flaeC'(Iaopuolas;v).

(Two last items are true for the case when our semigroup is dagger.)

Proof

1. flaeClaopols;v) e flaclpopols Cvoflae folpolyopols C
voflae folpopuoly Cvofoly< folpopCrvof<fouCrvofe
f € Cu;v).

2. fla € C'(Iaopola;v) < Iaopols C (fla)tovofla < Iaopols C (fola)lo
vofolgae Ipopuoly Claoflovofoly<=pnuC flovof e feCl(uv).

3. f|AEC”(IAO,LLOIA;V)<:>f|AOIAOIuOIAO(f|A)TgV@fOIAOIAO‘LLO
IpolpoffCve folpopolpofi Crve fouoffCve fel (uv).

O

7 Connectedness regarding funcoids and reloids

Definition 55 [ will call endo-reloids and endo-funcoids reloids and fun-
coids with the same source and destination.
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7.1 Some lemmas

Lemma 6 If (A [f]" B)AAUB € up (dom f Uim f) then f is closed on 1V A
for a funcoid f € FCD (U;U) and sets A, B € U (for every small set U ).

Proof Let AUB € up(dom fUim f). =(A [f]" B) &tV Bn(f) tV A =
05 = (dom fUim f)N 1tV BN (f)* A = 05V) = ((dom f Uim f)\ 1Y A) N
()"A=050) o (/)" AtV A 0

Corollary 19 If —(A [f]" B)A AU B € up (dom f Uim f) then f is closed on
1Y (A\ B) for a funcoid f and sets A, B € 2U (for every small set U ).

Proof Let —(A [f]" B)A AU B € up(dom fUim f). Then —((A\ B) [f]"
B)A1Y ((A\ B)UB) € up (dom f Uim f). O

Lemma 7 If ~(A [f]" B)A AU B € up (dom f Uim f) then —(A [f"]" B) for

every whole positive n.

Proof Let —(A [f]" B)A AU B € up(dom f Uim f). From the above lemma
(YA CY A YV Bn(f) 1Y A = 05U consequently (f)* A CtV (A\ B).
Because (by the above corollary) f is closed on 1tV (A\ B), then (f) (f) tY
AtV (A\ B), (f) (f) () 17 AtV (A\ B), ete. So (f") 1Y A 1V (A\ B),
B =< (f) 1Y A (A S B). O

7.2 Endomorphism series

Definition 56 Si(u) def pUp2upU. .. for an endomorphism p of a precategory
with countable join of morphisms.

Definition 57 S(u) def pl U S () = pPUpup?updu. .. where u° def Iob,
(identity morphism for the object Ob u) where Ob u is the object of endomor-
phism u for an endomorphism p of a category with countable join of morphisms.

I call S; and S endomorphism series.

We will consider the collection of all binary relations (on a set U), as well as
the collection of all funcoids and the collection of all reloids on a fixed set, as
categories with single object U and the identity morphisms Irs, IF¢P(©) | JRLD(D)

Proposition 43 The relation S(u) is transitive for the category of binary re-
lations.

Proof
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S()oSp) = poS(u)UpuoS(u)Up®oSuu...

= uptupu. ) u@EruFudu. ) u@Etupduptu..)
MOUMIU,uQU...
= Sp).

7.3 Connectedness regarding binary relations

Before going to research connectedness for funcoids and reloids we will excurse

into the basic special case of connectedness regarding binary relations on a set
0.

Definition 58 A set A is called (strongly) connected regarding a binary re-
lation p when

VX € Z(dompu) \ {0},Y € 2 (imp) \ {0} : (XUY =A= X [ Y).
Let O be a set.

Definition 59 Path between two elements a,b € U in a set A C U through
binary relation  is the finite sequence xy . ..z, where xo = a, xn, = b forn € N
and z;(p N A X A)x;11 for every i =0,...,n— 1. n is called path length.

Proposition 44 There exists path between every element a € U and that ele-
ment itself.

Proof It is the path consisting of one vertex (of length 0). O

Proposition 45 There is a path from element a to element b in a set A through
a binary relation p iff a (S(uN A x A)) b (that is (a,b) € S(uN A x A)).

Proof

= If a path from a to b exists, then {b} C ((uN A x A)™) {a} where n is the
path length. Consequently {b} C (S(uN A x A)){a}; a (S(uN A x A)) b.

< Ifa (S(uN A x A)) b then exists n € N such that a (uN A x A)™ b. By defi-
nition of composition of binary relations this means that there exist finite
sequence Z . . . T, where xg = a, x, = bforn € Nandz; (uNA x A) ;41
for every ¢ = 0,...,n — 1. That is there is path from a to b.

O
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Theorem 73 The following statements are equivalent for a relation p and a
set A:

1. For every a,b € A there is a path between a and b in A through L.
2. S(unN(Ax A) D AxA.

3. S(un(Ax A)=AxA.

4. A is connected regarding (.

Proof

(1)=(2) Let for every a,b € A there is a path between a and b in A through
. Then a (S(uN A x A)) b for every a,b € A. It is possible only when
S(pNn(Ax A)DAxA.

(3)=(1) For every two vertices a and b we have a (S(uN A x A)) b. So (by
the previous theorem) for every two vertices a and b exist path from a to
b.

(8)=(4) Suppose that =(X [uN (A x A)]Y) for some X,Y € L0\ {0} such
that X UY = A. Then by a lemma —(X [(ptNAx A)"] Y) for every
n € N. Consequently =(X [S(uNAx A)]Y). So S(uNAx A)#AxA.

(4)=(3) If (S(un(Ax A))){v} = A for every vertex v then S(uN A x A) =

A x A. Consider the remaining case when V' def (S(pNAxA){v}cCcA
for some vertex v. Let W = A\ V. If card A = 1 then S(uN A x A) D
(=) = A x A; otherwise W # (). Then VUW = A and so V [u] W what
is equivalent to V [uNA x A] W that is (uNAXx AYV N W # (. This
is impossible because (UNA X A)V = (uNAX A (S(uNAXx AV =
(Si(pNAXA))V C(S(pNAXA))V =V.

(2)=(3) Because S(uNAx A) C Ax A.

O

Corollary 20 A set A is connected regarding a binary relation w iff it is con-
nected regarding pN (A x A).

Definition 60 A connected component of a set A regarding a binary relation
F is a maximal connected subset of A.

Theorem 74 The set A is partitioned into connected components (regarding
every binary relation F ).
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Proof Consider the binary relation a ~ b < a (S(F)) bAb (S(F)) a. ~is a
symmetric, reflexive, and transitive relation. So all points of A are partitioned
into a collection of sets Q. Obviously each component is (strongly) connected. If
aset R C A is greater than one of that connected components A then it contains
a point b € B where B is some other connected component. Consequently R is
disconnected. (]

Proposition 46 A set is connected (regarding a binary relation) iff it has one
connected component.

Proof Direct implication is obvious. Reverse is proved by contradiction. [J

7.4 Connectedness regarding funcoids and reloids

Definition 61 Sj(u) = () {tRPOPwOPL) G (M) | M € upp} for an endo-
reloid p.

Definition 62 Connectivity reloid S*(u) for an endo-reloid p is defined as
follows:

§* () = ({040 S(ar) | M € upp.

Remark 9 Do not mess the word connectivity with the word connectedness
which means being connected[]

Proposition 47 S*(u) = IRPOPL) U S¥ (1) for every endo-reloid p.

Proof It follows from the theorem about distributivity of U regarding [ (see
[15]). O
Proposition 48 S*(u) = S(u) if u is a principal reloid.

Proof $°(1) = N{S(u)} = S(). 0

Definition 63 A filter object A € §F(Obp) is called connected regarding an
endo-reloid p when S*(p N (A xRP A)) O A xRP A

Obvious 30. A filter object A € Oby is connected regarding a reloid g iff
S*(un (A xRD A)) = A xRD 4,

Definition 64 A filter object A is called connected regarding an endo-funcoid
i when

VXY € g(ow)\{oﬁ(ow)} L(XUY=A= X[

In some math literature these two words are used interchangeably.
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Proposition 49 Let A be a set. The f.o. 1OP* A is connected regarding an
endo-funcoid [ iff

VX, Y € Z(Obp)\ {0} : (XUY =A= X [u"Y).
Proof

= Obvious.

< It follows from co-separability of filter objects.

O

Theorem 75 The following are equivalent for every set A and binary relation
won asetU:

1. A is connected regarding binary relation p.
2. 1V A is connected regarding tR-PWU) 4y,
3.tV A is connected regarding $FPWU) 4y,
Proof
(1)@(2) S* (TRLD(U;U) wn (TU AxRLD TU A)) —
g (TRLD(U;U) (‘u N (A X A))) :TRLD(U;U) S(/Lﬁ(A X A)) So S* (TRLD(U;U) pn (TU AxRLD TU A)) QTU

AxRLD TU A <:>TRLD(U;U) S(uﬁ(A % A)) QTRLD(U;U) (A % A) :TU AxRLD TU
A.

(1)< (3) It follows from the previous proposition.

Next is conjectured a statement more strong than the above theorem:

Conjecture 21 Let A is a f.o. on a set U and F is a binary relation on U.
A is connected regarding 1FCUV) F iff A is connected regarding 1R-PWU:V)
F.

Obvious 31. A filter object A is connected regarding a reloid p iff it is con-
nected regarding the reloid p N (A xR0 A).

Obvious 32. A filter object A is connected regarding a funcoid p iff it is
connected regarding the funcoid N (A xFP A).

Theorem 76 A filter object A is connected regarding a reloid f iff A is con-
nected regarding every F' € <TRLD(Obf§Obf)> up f.

Proof
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= Obvious.

< A is connected regarding tR-P(OPiOPf) piff §(F) = FOUF'UF?U... €
up (A xR 4),

S*(f) = N {1RLObwOPW §(F) | Feupfl DN{AxRPA | Feupf}=

A xRD 4,
(]

Conjecture 22 A filter object A is connected regarding a funcoid p iff A is
connected for every F € <TFCD(Ob #;0b “)> up p.

The above conjecture is open even for the case when A is a principal f.o.

Conjecture 23 A filter object A is connected regarding a reloid f iff it is con-
nected regarding the funcoid (FCD)f.

The above conjecture is true in the special case of principal filters:

Proposition 50 A f.o. 19P#* A (for a set A) is connected regarding an endo-
reloid f iff it is connected regarding the endo-funcoid (FCD)f.

Proof 19P/ A is connected regarding a reloid f iff A is connected regard-
ing every F' € up f that is when (taken in account that connectedness for
ARLD(OP fi0b f) [ s the same as connectedness of $FCP(OP £:0bf) f)

VF € up fVX, yeS(Obf)\{OS Obf)} S(XUY =T A= x {TFCD@bebf) F]
v,V € §(0b )\ {05V IVF cup f 1 (YUY =4S A = x [tFPOFONN p
VA, Y eg(Obf)\{oMObf)} (XUY =t A VFeupf: X { 4FCD(Ob f50b /) F]

VXY € g(Obf)\{OS Obf)} (X UY =17 A = X [(FCD)f]

that is when the set 19"/ A is connected regarding the funcoid (FCD)f. O

7.5 Algebraic properties of S and S*
Theorem 77 S*(S*(f)) = S*(f) for every endo-reloid f.

Proof §%(5°(f)) = () {1%PORO0 S(R) | ReupS*(f)} C
N{IRORION S(R) | Re (S(F) | F e )} = (1RO S(S(F)
N {TRPOPFOPD S(F) | Feupf}=5(f)

So S*(S*(f)) € S*(f). That S*(S*(f)) 2 S*(f) is obvious. O

Corollary 21 S*(S(f)) = S(S*(f)) = S*(f) for any endo-reloid f.
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) and S(S*(f)

( ) 2 5%(f)-
S*(f) and 5(5*(f))

Proof Obviously S*(S(f)) 2 S* (
- S (8% (f) = §°(). O

S*
But 5*(5(f)) € 5*(5*(f)) C

Conjecture 24 S(S(f)) = S(f) for
1. every endo-reloid f;

2. every endo-funcoid f.

Conjecture 25 For every endo-reloid f
1. 5(f) o S(f) = S(f);

2. 57(f) o 5*(f) = 5*(f);

3. 5(f) o 57(f) = 57(f) o S(f) = 57(f)-

Conjecture 26 S(f)o S(f) = S(f) for every endo-funcoid f.

8 Postface
8.1 Misc

See this Web page for my research plans: http://www.mathematics21.org/agt-plans.html
I deem that now the most important research topics in Algebraic General
Topology are:

e to solve the open problems mentioned in this work;
e define and research compactness of funcoids;

e research are n-ary (where n is an ordinal, or more generally an index set)
funcoids and reloids (plain funcoids and reloids are binary by analogy with
binary relations).

We should also research relationships between complete funcoids and complete
reloids.
All my research of funcoids and reloids is presented at
http://www.mathematics21.org/algebraic-general-topology.html

A Some counter-examples

For further examples we will use the filter object A defined by the formula

A:ﬂ{Ts(R) (—g5e) | EER,€>O}.

I also will denote €2 (A) the Fréchet f.o. on the set A.
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Example 1 There exist a funcoid f and a set S of funcoids such that fN{J S #
U fn) s.
Proof Let f = Ax"P 45®) {0} and § = {tFPER) ((g;400) x {0}) | &> 0}.

Then f NS = (AxFP 13E) {0})n HFEPER) ((0; +00) x {0}) = (AN 5E)
(0; +OO))XFCD Tf";’(ﬂ{) {0} # OFCD(IR;]R) while U <fﬁ> S = U {OFCD(]R;IR)} _ OFCD(IR;]R)'

Example 2 There exist a set R of funcoids and a funcoid f such that folJ R #
U {fo) R.

Proof Let f=AxFP {0}, R = {{0} xFP (5;400) | e€R}.
We have UR = {0} x"P (0 oo); fo R =1FPH®) ({0} x {0}) #
OFCD(]R;]R) and U <fo> R = U {OFCD(]R;]R)} — OFCD(]R;]R)' O

Example 3 There exist a set R of funcoids and f.o. X and ) such that
L X[URIYABfeER: X[f]Y;

2. (UrmxoU{nx | feRrh
Proof

1. Let X = Aand Y = 158, Let R = {(#FPER) ((g;400) x R) | £€R,e > 0}.
Then | R =tFPER) ((0; +00) x R). So X [JR] Y and Vf € R : =(X [f]
Y).

2. With the same X and R we have ((JR) X = R and (f) X = 05(®) for every
feR thusU{(f)X | feR}=05®),

O

Theorem 78 For a f.o. a we have a xRP q C [RLPBase(@)) only in the case if
a = 085Base(@)) o1 q is q trivial atomic f.o. (that is corresponds to an one-element
set).

Proof If a xRP g C [RLD(Base(a)) then exists m € up(a xRP a) such that
m C Igase(a). Consequently exist A, B € upa such that A x B C Ipuee(q) What
is possible only in the case when 1B2s¢(a) 4 =qBase(a) B — 4 and A = B is an
one-element set or empty set. O

Corollary 22 Reloidal product of a non-trivial atomic filter object with itself
18 non-atomic.

Proof Obviously (a xRP @) N [RLP(Base(a)) £ (8(Base(a)) and (a xRP g) N
IRLD(BaSC(a)) Ca «RLD O
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Example 4 Non-convex reloids exist.
Proof Let a is a non-trivial atomic f.o. Then id?-P is non-convex. This follows
from the fact that only direct products which are below jqREP(Base(a)) yre direct

products of atomic f.o. and idX-Pis not their join. O

Example 5 (RLD)i,f # (RLD)ous f for a funcoid f.

Proof Let f=IFP™. Then (RLD)inf =J{a x®Pa | a€atoms15™)}
and (RLD)oyu f = IRPM), But as we have shown above a xRP q ¢ JRDM) for
non-trivial f.o. a, and so (RLD)inf € (RLD)out f- O

Proposition 51 [FPMIA tFEOMN (N x N) \ I) = I§R, # 0FPE:N).

Proof Note that (15 ) & = X NQ(N).

Let f = IFPMN) | g =AFCOINN) (N x N) \ Iy).

Let z is a non-trivial atomic f.o. If X € upx then card X > 2 (In fact,
X is infinite but we don’t need this.) and consequently (g)* X = 15®), Thus
(g) 2 = 13, Consequently

(g w=(f)znge=2n150 =g
Also <I£F2((:]IE\)I)>x =2zNOQ(N) =z
Let now z is a trivial f.o. Then (f)x = x and (g) z = 1™\ z. So

(fngz=(flzn{g)z=an (13<1N> \x) — 3(N).

Also (IFR) )z = 2N 2 (N) = 050,

So (fng)x = <Ist((:113)> x for every atomic f.o. z. Thus fNng= Ist((:HI?I)' d

Example 6 There exist binary relations f and g such that 1FCP(A:B) fn 4FCD(A;B)
g #AFEPAB) (£ g) for some sets A, B such that f,g C A x B.

Proof From the proposition above. ([

Example 7 There exists a principal funcoid which is not a complemented ele-
ment of the lattice of funcoids.
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Proof I will prove that quasi-complement (see [15] for the definition of quasi-
complement) of the funcoid I FCD(N) is not its complement. We have:

(reee)” = Y{ceFDmiN) | ex e}
U{™ 1} xPP N {8} | a,8e N, 4N {a} 7P 4N (5} = 17PN}
= UM {a} <P {8} | afeN,a#p}

PPN | J{a} x {8} | a,8€N,a#p}
TFCD(]N;]N) (N x N \ I]N)

V)

(used the corollary [[0). But by proved above

(IFCD(]N))* A IFEOMN) £ (T (N).

Example 8 There exists funcoid A such that up h is not a filter.

Proof Consider the funcoid h = Isz%nl?I)' We have (from the proof of proposition
ET) that f € uph and g € uph, but fNg=0¢ uph. O

Example 9 There exists a funcoid h # 0FP(4iB) guch that (RLD)outh =
ORLD(A;B)'

Proof Consider h = Isz%nl?I)' By proved above h = f N g where f = IFP(N)
g :TFCD(]N;]N) ((N % N) \ I]N)'

We have idy, (N x N) \ idy € up h.

So (RLD)outh = (RPN yp py RPN (iq, 0 (N x N) \ idy)) =

ORLDANN): and thus (RLD)gyuh = ORLPNN), O

Example 10 There exists a funcoid h such that (FCD)(RLD)ouh # h.

Proof It follows from the previous example. O

Example 11 (RLD), (FCD) f # f for some convex reloid f.

Proof Let f = IR'PMN) " Then (FCD)f = I"PM) Let a be some non-
trivial atomic f.o. Then (RLD),, (FCD)f 2 a xRP a ¢ IRPMN) and thus

(RLD);, (FCD) f £ f. 0

Remark 10 Before I found the last counter-example, I thought that (RLD),,
is an isomorphism from the set of of funcoids to the set of convex reloids. As
this conjecture failed, we need an other way to characterize the set of reloids
isomorphic to funcoids.
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Example 12 There exist funcoids f and ¢ such that

(RLD)out(g o f) # (RLD)outg © (RLD)out f-

Proof Take f = Isz((:]II?I) and g = 15N xFD 4N 01 for some a € N. Then
(RLD)ous f = OREPNN) and thus (RLD)outg © (RLD)ous f = OREDINGN),

We have go f = Q (N) xFP N 1],

Let’s prove (RLD) oyt (Q (N) xFP AN £a}) = Q (N) xRLD 4N 1],

Really: (RLD)out (2 (N) xFP N {a}) = N (PROMN) yp(Q (N) xFCP 4N
{a}) = N{IRPEN (K x {a}) | KeupQ(N)}.

Fc upﬂ{TRLD(]N;]N) (K x{a}) | KeuwQ(N)}<
Feuw (N{NK | KecupQ(N)}xP N {a}) for every F € # (N x N).
Thus
N {TRLD(IN;IN) (Kx{a}) | KeuwQ(N)}=
N{INE | K eupQ(N)} xFP 4N {a) = 0 (N) xFP ¥ {a].

S0 (RLD)out (2 (N) xFP AN 101y = O (N) xRLD 4N £},

Thus (RLD)eut(g 0 f) = Q (N) xRLD 4N £} £ QRLD(N:N) 0

Example 13 (FCD) does not preserve finite meets.

Proof (FCD)(IRLD(IN) N (1RLD(]N;]N) \IRLD(IN))) — (FCD)ORLD(IN;IN) _ OFCD(]N;]N)'
On the other hand

(FCD)IRLD(IN)m(FCD)(1RLD(]N;]N)\IRLD(]N))> _ IFCD(]N)m TFCD(]N;]N) (]NX]N\I]N) — 5((:]1%) OFCD(]N;]N)

(used the proposition BTI). O

Corollary 23 (FCD) is not an upper adjoint (in general).

Considering restricting polynomials (considered as reloids) to atomic filter
objects, it is simple to prove that each that restriction is injective if not restrict-
ing a constant polynomial. Does this hold in general? No, see the following
example:

Example 14 There exists a monovalued reloid with atomic domain which is
neither injective nor constant (that is not a restriction of a constant function).

Proof (based on [16]) Consider the function F' € NN*N defined by the formula
(z3y) — =

Let w,, is a non-principal atomic filter object on the vertical line {a} x N for
every x € N.

Let T is the collection of such sets Y that Y N ({z} x N) € upw, for all but
finitely many vertical lines. Obviously T is a filter.

Let w € atomsup ' 7.

For every z € N we have some Y € T for which ({2} x N)NY = () and thus
({z} x N)Nupw = 0.
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Let g = (TRLD(N?N) F) |- If g is constant, then there exist a constant
function G € upg and F N G is also constant. Obviously dom RLPINXN;N)
(FNG) D w. The function F'N G cannot be constant because otherwise w C
dom PRIDINXN:N) (B A Gy CHN*N (£ % N) for some = € N what is impossible
by proved above. So g is not constant.

Suppose that g is injective. Then there exists an injection G € upg. So
dom G intersects each vertical line by atmost one element that is dom G inter-
sects every vertical line by the whole line or the line without one element. Thus
domG € T C upw and consequently dom G ¢ upw what is impossible.

Thus g is neither injective nor constant. ([

A.1 Second product. Oblique product

Definition 65 A xR0 B of (RLD)out (A xFP B) for every f.o. A and B. I will

call it second direct product of filter objects A and B.

Remark 11 The letter F is the above definition is from the word “funcoid”.
It signifies that it seems to be impossible to define A x%LD B directly without
referring to funcoidal product.

Definition 66 Oblique products of f.o. A and B are defined as
A x B = {RDBase(A)iBase(B)) | f ¢ 2 (Base (A) x Base(B)),VB €
up B :TFCD(Basc(.A);Basc(B)) f ) .AXFCD TBaSC(B) B},’

A x B = ({{RLD@Base(A)iBase(B)) | f e 2 (Base(A) x Base (B)),VA €
upA :TFCD(Base(.A);Base(B)) f ;)TBase(A) A xFCD B}

Proposition 52 A xRP B C A x B C A xR0 B for every f.o. A, B.

Proof AxB C {{RLP(Base(A)Base(B)) | f c P (Base(A) x Base (B)),VA €
up A, VB € upB :TFCD(Base(.A);Base(B)) f QTBase(.A) AxFCD TBase(B) B} C
m {TBaSC(.A) AxFCD TBasc(B) B | Ae up.A,B c upB} = A xRLD B
AxB D ﬂ{TRLD(Base(A);Base(B)) f | f cP (Base (.A) % Base (B)) 7TFCD(B&se(A);Baxse(ls‘))
f D AXFCDB} — ﬂ {TRLD(Base(A);Base(B)) f | f € up (A x FCD B)} — (RLD)out (A x FCD B) —
AXRD B, t

Conjecture 27 A xRP B c A x B for some fo. A, B.

A stronger conjecture:

Conjecture 28 AxRPB c AxB c AxRLPB for some f.o. A, B. Particularly,
is this formula true for A =B = AN 1R (0;4+00)?

The above conjecture is similar to Fermat Last Theorem as having no value
by itself but being somehow challenging to prove it.

Example 15 A x B C A xRP B for some f.o. A, B.
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Proof It’s enough to prove A x B # A xRP B,

Let Ay = AN T® (0;+00). Let A=B=A4.

Let K = (g) |]R><]R-

Obviously K € up (.A xRLD B).

AxB QTRLD(Base(.A);Base(B)) K and thus K € up (.A X B) because TFCD(Base(.A);Base(B))
KD A+XFCD TBaSC(B) B = AXFCD TBaSC(B) B for B = (0, +OO)

Thus A x B # A xRP B. O

Example 16 A x®-0 B c A xRP B for some f.o. A, B.

Proof This follows from the above example. O

Proposition 53 (A x B)N (A x B) = Ax®P B for every f.o. A, B.

Proof (A X B) N (A X B) C m{TRLD(Basc(.A);Basc(B)) f |
f c P (Base (A) % Base (B)) ,TFCD(Basc(.A);Basc(B)) f oA « FCD B} —
ﬂ {TRLD(Basc(.A);Basc(B)) f | f € up (.A « FCD B)} — (RLD)out (.A « FCD B) —
AXRD B,

To finish the proof we need to show Ax B D AXT;LDB and AxB D AXT;LDB.
By symmetry it’s enough to show A x B D A xRD B what is proved above. [

Example 17 (A x B)U (A x B) C A xRP 3 for some f.o. A, B.

Proof (based on [3]) Let A = B = Q(N). It’s enough to prove (A x B) U
(A x B) # AxRDB.

Let X cup A, Y eupB thatis X € Q(N), Y € Q(N).

Removing one element = from X produces a set P. Removing one element
y from Y produces a set ). Obviously P € Q(IN), Q € Q(N).

Obviously (P x N)U (N x Q) € up ((A x B) U (A x B)).

(PxN)U(Nx Q) 2 X xY because (z;y) € X XY but (2;y) € (P x N)U
(N x Q).

Thus (P x N)U (N x Q) € up (A xRLD B) by properties of filter bases. [

Example 18 (RLD)out(FCD)f # f for some convex reloid f.
Proof Let f = A xR'P B where A and B are from the previous example.
(FCD)(A xRtP B) = A xFCP B by the proposition B3

S0 (RLD) ot (FCD) (A XRPB) = (RLD)out (AXFPB) = AxRPB £ AXRLDB.
(]
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