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1 Draft status
This is a rough draft.

In this article notations are used accordingly:
http://www.mathematics21.org/binaries/rewrite-plan.pdf
Particularly hf i�X=

deffy j x2X ^ x f yg for a binary relation f and a set X.
The motto of this article is: �Funcoids are �lters on a lattice.�

2 Rearrangement of collections of sets
Let Q is a set of sets.

Let � be the relation on
S

Q de�ned by the formula

a� b,8X 2Q: (a2X, b2X):

[TODO: Generalize it by the formula a� b,8X 2Q: (a2 atomsX, b2 atomsX):]
[TODO: Reloids RLD(A;B) between posets A and B is F(atomsA� atomsB)?]

Proposition 1. � is an equivalence relation on
S

Q.

Proof.

Re�exivity. Obvious.

Symmetry. Obvious.

Transitivity. Let a� b^ b� c. Then a2X, b2X, c2X for every X 2Q. Thus a� c. �

De�nition 2. Rearrangement R(Q) of Q is the set of equivalence classes of
S

Q for �.

Obvious 3.
S

R(Q) =
S

Q.

Obvious 4. ;2/ R(Q).

Lemma 5. cardR(Q)� 2cardQ.

Proof. Having an equivalence class C, we can �nd the set f 2PQ of all X 2Q such that a2X
for all a2C. b�a,8X 2Q: (a2X, b2X),8X 2Q: (X 2 f, b2X). So C=fb2

S
Q j b�ag

can be restored knowing f . Consequently there are no more than cardPQ=2cardQ classes. �

Corollary 6. If Q is �nite, then R(Q) is �nite.

Proposition 7. If X 2Q, Y 2R(Q) then X \Y =/ ;,Y �X .

Proof. Let X \ Y =/ ; and x 2 X \ Y . Then y 2 Y , x � y, 8X 0 2 Q: (x 2 X 0, y 2 X 0))
(x2X, y 2X), y 2X for every y. Thus Y �X.

Y �X)X \Y =/ ; because Y =/ ;. �

Proposition 8. If ;=/ X 2Q then there exists Y 2R(Q) such that Y �X ^X \Y =/ ;.

Proof. Let a 2 X . Then [a] = fb 2
S

Q j 8X 0 2 Q: (a 2 X 0, b 2 X 0)g = fb 2
S

Q j 8X 0 2 Q:
b2X 0g�fb2

S
Q j b2Xg=X . But [a]2R(Q).

X \Y =/ ; follows from Y �X by the previous proposition. �
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Proposition 9. If X 2Q then X =
S
(R(Q)\PX).

Proof.
S
(R(Q)\PX)�X is obvious.

Let x 2X. Then there is Y 2R(Q) such that x 2 Y . We have Y �X that is Y 2PX by a
proposition above. So x 2 Y where Y 2 R(Q) \ PX and thus x 2

S
(R(Q) \ PX). We have

X �
S
(R(Q)\PX). �

3 Finite unions of Cartesian products
Let A, B be sets.

I will denote X =A nX .
Let denote ¡(A;B) the set of all �nite unionsX0�Y0[ :::[Xn¡1�Yn¡1 of Cartesian products,

where n2N and Xi2PA, Yi2PB for every i=0; :::; n¡ 1.

Proposition 10. The following sets are pairwise equal:

1. ¡(A;B);

2. the set of all sets of the form
S
X2S (X � YX) where S are �nite collections on A and

YX 2PB for every X 2S;
3. the set of all sets of the form

S
X2S (X�YX) where S are �nite partitions of A and YX2PB

for every X 2S;
4. the set of all �nite unions

S
(X;Y )2� (X � Y ) where � is a relation between a partition of

A and a partition of B (that is dom � is a partition of A and im � is a partition of B).

5. the set of all �nite intersections
T
i=0;:::;n¡1 (Xi�Yi[Xi�B) where n2N and Xi2PA,

Yi2PB for every i=0; :::; n¡ 1.

Proof.

(1)�(2), (2)�(3). Obvious.

(1)�(2). Let Q2¡(A;B). Then Q=X0�Y0[ ::: [Xn¡1�Yn¡1. Denote S=fX0; :::; Xn¡1g.
We have Q=

S
X 02S (X

0�
S
fYi j Xi=X 0g)2 (2).

(2)�(3). Let Q=
S
X2S (X �YX) where S is a �nite collection on A and YX 2PB for every

X 2S. Let
P =

[
X 02R(S)

¡
X 0�

[
fYX j X 2S ^X 0�Xg

�
To �nish the proof let's show P =Q.
hP i�fxg=

S
fYX j X 2S ^X 0�Xg where x2X 0.

Thus hP i�fxg=
S
fYX j X 2S ^ x2Xg= hQi�fxg. So P =Q.

(4)�(3).
S
(X;Y )2� (X �Y )=

S
X2dom� (X �

S
fY 2PB j (X ;Y )2�g)2 (3).

(3)�(4).
S
X2S (X�YX)=

S
X2S (X�

S
(R(fYX j X 2Sg)\PYX))=

S
X2S (X�

S
fY 02

R(fYX j X 2 Sg) j Y 0� YXg) =
S
X2S (X �

S
fY 0 2R(fYX j X 2 Sg) j (X ; Y 0) 2 �g) =S

(X;Y )2� (X � Y ) where � is a relation between S and R(fYX j X 2 Sg), and (X;

Y 0)2�,Y 0�YX.
(5)�(3). Obvious.

(3)�(5). Let Q=
S
X2S (X �YX)=

S
i=0;:::;n¡1 (Xi�Yi) for a partition S= fX0; :::; Xn¡1g

of A. Then Q=
T
i=0;:::;n¡1 (Xi�Yi[Xi�B). �

Exercise 1. Formulate the duals of these sets.

Proposition 11. ¡(A;B) is a boolean lattice, a sublattice of the lattice P(A�B).

Proof. That it's a sublattice is obvious. That it has complement, is also obvious. Distributivity
follows from distributivity of P(A�B). �
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I will denote F¡(A;B)= f(A;B;F ) j F 2F¡[A;B]g.

Remark 12. It should be instead be denoted as (F �¡)(A;B) but for brevity I omit �.

4 Before the diagram
Next we will prove the below theorem 35 (the theorem with a diagram). First we will present
parts of this theorem as several lemmas, and then then state a statement about the diagram which
concisely summarizes the lemmas (and their easy consequences).

Obvious 13. up¡(Src f ;Dst f)f =(up f)\¡ for every reloid f .

Conjecture 14. �F(B) upAX is not a �lter for some �lter X 2F¡(A;B) for some sets A, B.

Remark 15. About this conjecture see also:

� http://goo.gl/DHyuuU

� http://goo.gl/4a6wY6

Lemma 16. Let A, B be sets. The following are mutually inverse order isomorphisms between
F¡(A;B) and FCD(A;B):

1. A 7!
dFCD upA;

2. f 7!up¡(A;B)f .

Proof. Let's prove that up¡(A;B)f is a �lter for every funcoid f . We need to prove that P \Q2up f
whenever

P =
\

i=0;:::;n¡1
(Xi�Yi[Xi�B) and Q=

\
j=0;:::;m¡1

(Xj
0�Yj0[Xj

0 �B):

This follows from P 2 up f , 8i 2 0; :::; n ¡ 1: hf iXi � Yi and likewise for Q, so having
hf i(Xi\Xj

0)�Yi\Yj0 for every i=0; :::; n¡ 1 and j=0; :::; m¡ 1. From this it follows

((Xi\Xj
0)� (Yi\Yj0))[ (Xi\Xj

0 �B)� f

and thus P \Q2 up f .
Let A, B be �lters on ¡. Let

dFCD up A =
dFCD up B. We need to prove A = B. (The rest

follows from proof of the theorem 6.104 from my book [1]). We have: [TODO: Separate the �rst
equality below from theorem 6.104 into a separate lemma.]

A=
lFCD

fX �Y [X �B 2A j X 2PA; Y 2PBg =

lFCD
fX �Y [X �B j X 2PA; Y 2PB;9P 2A:P �X �Y [X �Bg =

lFCD
fX �Y [X �B j X 2PA; Y 2PB;9P 2A: hP i�X �Y g = (*)

lFCD �
X �Y [X �B j X 2PA; Y 2PB;

l
fhP i�X j A2 upAgvY

	
=

lFCD
8<:X �Y [X �B j X 2PA; Y 2PB;

l
(
hP i�X j A2up

lRLD
upA

)
vY

9=; =

lFCD
8<:X �Y [X �B j X 2PA; Y 2PB;

*
(FCD)

lRLD
upA

+
X vY

9=; = (**)

lFCD
8<:X �Y [X �B j X 2PA; Y 2PB;

*
lFCD

up
lRLD

upA

+
X vY

9=; =

lFCD
8<:X �Y [X �B j X 2PA; Y 2PB;

*
lFCD

upA

+
X vY

9=;:
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(*) by properties of generalized �lter bases, because fhP i�X j P 2Ag is a �lter base.
(**) by theorem 8.3 in [1].
Similarly

upB=
lFCD
8<:X �Y [X �B j X 2PA; Y 2PB;

*
lFCD

upB

+
X vY

9=;:
Thus A=B. �

[TODO: For pointfree funcoids?]

Proposition 17. g � f 2¡(A;C) if f 2¡(A;B) and g 2¡(B;C) for some sets A, B, C.

Proof. Because composition of Cartesian products is a Cartesian product. �

De�nition 18. g � f =
dF¡(A;C) fG�F j F 2 up f ;G2up gg for f 2F¡(A;B) and g 2F¡(B;C)

(for every sets A, B, C).

We de�ne f¡1 for f 2F¡(A;B) similarly to f¡1 for reloids and similarly derive the formulas:

1. (f¡1)¡1= f ;

2. (g � f)¡1= f¡1 � g¡1.

4.1 Associativity over composition
I will denote base (A;Z)=A, core(A;Z)=Z for a �ltrator (A;Z). [TODO: move above in the book]

Obvious 19. P(coreF)\
dF(baseF) upbaseF f = f for f ??.

Corollary 20.
dF(baseF) upbaseF is an injection.

Lemma 21.
dRLD up¡(A;C)(g� f)=

¡dRLD up¡(B;C)g
�
�
¡dRLD up¡(B;C)

�
for every f 2F(¡(A;B)),

g 2F(¡(B;C)) (for every sets A, B, C).

Proof. If K 2
dRLD up¡(A;C)(g � f) then K�G�F for some F 2 f , G2 g. But F 2up¡(A;B) f , thus

F 2
lRLD

up¡(A;B) f

and similarly

G2
lRLD

up¡(B;C) g:

So we have

K �G �F 2

 
lRLD

up¡(B;C) g

!
�

 
lRLD

up¡(A;B) f

!
:

Let now

K 2

 
lRLD

up¡(B;C) g

!
�

 
lRLD

up¡(A;B) f

!
:

Then there exist F 2
dRLD up¡(A;B) f and G2

dRLD up¡(B;C) g such that K �G�F . By properties
of generalized �lter bases we can take F 2up¡(A;B) f and G2up¡(B;C) g. ThusK 2up¡(A;C)(g � f)
and so K 2

dRLD up¡(A;C)(g � f). �

Lemma 22. (FCD)
dRLD f =

dFCD up f for every f 2F¡(A;B) (where A, B are sets).
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Proof. (FCD)
dRLD f =

dFCD up
dRLD f =

dFCD up f . �

Proposition 23. (RLD)in(f t g) = (RLD)in f t (RLD)in g for every funcoids f ; g 2 FCD(A; B).
[TODO: Move it above in the book.]

Proof. (RLD)in(f t g) =
FRLD �

a �RLD b j a 2 atomsF(A); b 2 atomsF(B); a �FCD b v f t g
	
=FRLD �a�RLD b j a2atomsF(A); b2 atomsF(B); a�FCD bv f _a�FCD bv g

	
=
FRLD �a�RLD b j a2

atomsF(A); b 2 atomsF(B); a �FCD b v f
	
t
FRLD �a �RLD b j a 2 atomsF(A); b 2 atomsF(B);

a�FCD bv g
	
=(RLD)in f t (RLD)in g. �

Lemma 24. (RLD)inX =X for X 2¡(A;B).

Proof. X =X0�Y0[ ::: [Xn�Yn=(X0�FCDY0)tFCD ::: tFCD (Xn�FCDYn).
(RLD)in X = (RLD)in(X0 �FCD Y0) tRLD ::: tRLD (RLD)in(Xn �FCD Y ) =

(X0�RLDY0)tRLD ::: tRLD (Xn�RLDYn)=X0�Y0[ ::: [Xn�Yn=X. �

Lemma 25.
dRLD up f =(RLD)in

dFCD up f for every �lter f 2F¡(A;B).

Proof. (RLD)in
dFCD f =

dRLD h(RLD)ini�up f = (by the previous lemma)=
dRLD up f . �

Lemma 26.

1. f 7!
dRLD up f and A 7!¡(A;B)\ upA are mutually inverse bijections between F¡(A;B)

and a subset of reloids.

2. These bijections preserve composition.

Proof. 1. That they are mutually inverse bijections is obvious.
2.
¡dRLD up g

�
�
¡dRLD up f

�
=
dRLD �

G � F j F 2
dRLD

f ; G 2
dRLD

g
	
=
dRLD fG �

F j F 2 f ; G 2 gg =
dRLD dF¡(Src f ;Dst g) fG � F j F 2 f ; G 2 gg =

dRLD (g � f). So
dRLD

preserves composition. That A 7!¡(A;B)\upA preserves composition follows from properties of
bijections. �

Lemma 27. Let A, B, C be sets.

1.
¡dFCD up g

�
�
¡dFCD up f

�
=
dFCD up(g � f) for every f 2F¡(A;B), g 2F¡(B;C);

2.
¡
up¡(B;C) g

�
�
¡
up¡(A;B) f

�
= up¡(A;B)(g � f) for every funcoids f 2 FCD(A; B) and

g 2FCD(B:C).

Proof. It's enough to prove only the �rst formula, because of the bijection from thereom 16.
Really:

dFCD up(g � f) =
dFCD up

dRLD up(g � f) =
dFCD up

¡dRLD up g �
dRLD up f

�
=

(FCD)
¡dRLD up g �

dRLD up f
�
=
¡
(FCD)

dRLD up g
�
�
¡
(FCD)

dRLD up f
�
=
¡dFCD up

dRLD up g
�
�¡dFCD up

dRLD up f
�
=
¡dFCD up g

�
�
¡dFCD up f

�
. �

Corollary 28. (h � g) � f = h � (g � f) for every f 2 F(¡(A;B)), g 2 F¡(B;C), h 2 F¡(C;D) for
every sets A, B, C, D.

Lemma 29. ¡(A;B)\GR f is a �lter on the lattice ¡(A;B) for every reloid f 2RLD(A;B).

Proof. That it is an upper set, is obvious. If A; B 2¡(A;B)\GR f then A; B 2¡(A;B) and A;
B 2GR f . Thus A\B 2¡(A;B)\GR f . �

Proposition 30. If Y 2up hf iX for a funcoid f then there exists A2upX such that Y 2up hf iA.

Proof. Y 2up
dF fhf iA j A2up ag.
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So by properties of generalized �lter bases, there exists A2 up a such that Y 2up hf iA. �

Lemma 31. (FCD)f =
dFCD (¡(A;B)\GR f) for every reloid f 2RLD(A;B).

Proof. Let a be an ultra�lter. We need to prove

h(FCD)f ia=

*
lFCD

(¡(A;B)\GR f)

+
a

that is *
lFCD

up f

+
a=

*
lFCD

(¡(A;B)\GR f)

+
a

that is
l

F2up f

F

hF ia=
l

F2¡(A;B)\up f

F

hF ia:

For this it's enough to prove that Y 2 up hF ia for some F 2 up f implies Y 2 up hF 0ia for some
F 02¡(A;B)\GR f .

Let Y 2up hF ia. Then (proposition above) there exists A2up a such that Y 2up hF iA.
Y 2 up hA �FCD Y t A �FCD 1ia; hA �FCD Y t A �FCD 1iX = Y 2 up hF iX if 0 =/ X v A and

hA�FCDY tA�FCD1iX =12 up hF iX if X vA.
Thus A�FCDY tA�FCD1wF . So A�FCDY tA�FCD1 is the sought for F 0. �

4.2 Relationships between (FCD) and (RLD)¡

De�nition 32. (RLD)¡ f =
dRLD up¡(Src f ;Dst f) f for every funcoid f . I call (RLD)¡ as ¡-reloid

or Gamma-reloid.

Lemma 33. (FCD)(RLD)¡ f = f for every funcoid f .

Proof. For every �lter X 2 F(Src f) we have h(FCD)(RLD)¡ f iX =
d
F2up (RLD)¡ f
F hF iX =d

F2up¡(Src f ;Dst f) f
F hF iX .

Obviously
d
F2up¡(Src f;Dst f) f
F hF iX w hf iX . So (FCD)(RLD)¡ f w f .

Let Y 2up hf iX . Then (propositiona above) there exists A2upX such that Y 2 up hf iA.
Thus A � Y [ A � 1 2 up f . So h(FCD)(RLD)¡ f iX =

d
F2up¡(Src f;Dst f) f
F hF iX v hA �

Y [ A � 1iX = Y . So Y 2 up h(FCD)(RLD)¡ f iX that is hf iX w h(FCD)(RLD)¡ f iX that is
f w (FCD)(RLD)¡ f . �

Proposition 34. (RLD)¡ is neither upper nor lower adjoint of (FCD) (in general).

Proof. It is not upper adjoint because (RLD)in is the upper adjoint of (FCD) and (RLD)in=/ (RLD)¡.
If (RLD)¡ is the lower adjoint of (FCD), then f w (RLD)¡ (FCD) f and thus f w (RLD)in (FCD) f .

But f v (RLD)in (FCD) f , thus having (RLD)in (FCD) f = f what is not an identity (take f =(=)jA
for an in�nite set A). �

5 The diagram

Theorem 35. The following is a commutative diagram (in category Set), every arrow in this
diagram is an isomorphism. Every cycle in this diagram is an identity (therefore �parallel� arrows
are mutually inverse). The arrows preserve order, composition, and reversal (f 7! f¡1).
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funcoidal reloids

(RLD)in

(FCD)

funcoids

dRLD
�lters on ¡

f 7! f \¡

up¡

dFCD

Proof. First we need to show that
dRLD

f is a funcoidal reloid. But it follows from lemma 25.
Next, we need to show that all morphisms depicted on the diagram are bijections and the

depicted �opposite� morphisms are mutually inverse.
That (FCD) and (RLD)in are mutually inverse was proved above in the book.

That
dRLD and f 7! f \¡ are mutually inverse was proved above.

That
dFCD and up¡ are mutually inverse was proved above.

It remains to prove that three-element cycles are identities. But this follows from lemma 25.
That the morphisms preserve order and composition was proved above. That they preserve

reversal is obvious. �

6 Some additional properties

Proposition 36. For every funcoid f 2 FCD(A;B) (for sets A, B):

1. dom f =
dF(A) hdomi�up¡(A;B) f ;

2. im f =
dF(A) himi�up¡(A;B) f .

Proof. Take fX �Y j X 2PA; Y 2PA; X �Y � f g� up¡(A;B) f . I leave the rest reasoning as
an exercise. �

Proposition 37. (RLD)¡ f w (RLD)in f w (RLD)out f for every funcoid f .

Proof. We already know that (RLD)in f w (RLD)out f (see above in the book).
The formula (RLD)¡ f w (RLD)in f follows from 8G2 up¡(Src f ;Dst f) f :Gw f . �

Example 38. (RLD)¡ f A (RLD)in f A (RLD)out f for some funcoid f .

Proof. Take f =(=)jR. We already know that (RLD)in f A (RLD)out f (see above in the book).
It remains to prove (RLD)¡ f =/ (RLD)in f .
Take F =

S
i2Z ([i; i+1[� [i; i+1[).

Then F 2 f =up (RLD)in f (because hF iawhf ia for both principal ultra�lter a=fig and every
other ultra�lter a).

It remains to prove F 2/ up (RLD)¡ f .
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Suppose F 2 up (RLD)¡ = up
dRLD up¡(Src f ;Dst f) f . Then by properties of generalized �lter

bases, there is F 02up¡(Src f ;Dst f) f such that F �F 0. Because F 0�
S
i2Z ([i; i+1[� [i; i+1[) and

F 0� (=)jR, there is a point q 2 [i; i+1[� [i; i+1[ for each i2Z; thus, F 02/ ¡(Src f ;Dst f).
Thus F 2/ up (RLD)¡ f . �

Theorem 39. For every reloid f and X 2F(Src f), Y 2F(Dst f):

1. X [(FCD)f ]Y,8F 2up¡(Src f ;Dst f) f :X [F ]Y;

2. h(FCD)f iX =
d
F2up¡(Src f;Dst f) f
F hF iX .

Proof. 1. 8F 2 up¡(Src f ;Dst f) f :X [F ] Y , (by properties of generalized �lter bases, taking into
account that funcoids are isomorphic to �lters),X

�dFCD up¡(Src f ;Dst f) f
�
Y,X [(FCD)f ]Y .

2.
d
F 2up¡(Src f ;Dst f) f
F hF ia=


dFCD up¡(Src f ;Dst f) f
�
a= h(FCD)f ia for every ultra�lter a.

It remains to prove that the function

'=�X 2F(Src f):
l

F2up¡(Src f ;Dst f) f

F

hF iX

is a component of a funcoid (from what follows that '= h(FCD)f i). To prove this, it's enough to
show that it preserves �nite joins and �ltered meets. [TODO: De�nition of �ltered meets.]

'0 = 0 is obvious. '(I t J ) =
d
F2up¡(Src f ;Dst f) f
F (hF iI t hF iJ ) =

d
F2up¡(Src f ;Dst f) f
F hF iI t

d
F2up¡(Src f ;Dst f) f
F hF iJ = ' I t ' J . If S is a generalized �lter base of Src f , then '

dF S =
d
F2up¡(Src f ;Dst f) f
F hF i

dF S =
d
F2up¡(Src f ;Dst f) f
F dF hhF ii�S =

d
F2up¡(Src f ;Dst f) f
F d

X2S
F hF iX =

d
X2S
F d

F2up¡(Src f;Dst f) f
F hF iX =

d
X2S
F 'X =

dF h'i�S.
So ' is a component of a funcoid. �

De�nition 40. �f =dRLD up¡(Src f ;Dst f)f for reloid f .

Conjecture 41. For every reloid f :

1. �f =(RLD)in (FCD) f ;
2. �f =(RLD)¡ (FCD) f .

Obvious 42. �f w f for every reloid f .

Example 43. (RLD)¡f =/ �(RLD)outf for some funcoid f .

Proof. Take f = id
(N )
FCD . Then, as it was shown above, (RLD)outf = 0 and thus �(RLD)outf = 0.

But (RLD)¡f w (RLD)in f =/ 0. So (RLD)¡f =/ �(RLD)outf . �

Conjecture 44. (RLD)¡f =�(RLD)inf for every funcoid f .

Proposition 45. [TODO: Move it above in the book.] f vA�FCDB,dom f vA^ im f vB for
every funcoid f and �lters A2F(Src f), B 2F(Dst f).

Proof. f vA�FCDB)dom f vA because dom(A�FCDB)vA.
Let now dom f v A ^ im f v B. Then hf iX =/ 0) X �/ A that is f v A �FCD 1. Similarly

f v 1�FCDB. Thus f vA�FCDB. �

Theorem 46. dom (RLD)inf =dom f and im (RLD)inf = im f for every funcoid f . [TODO: Move
it above in the book, remove the conjecture which this statement proves.]

Proof. We have for every �lter X 2F(Src f):
X w dom (RLD)inf , X �RLD 1 w (RLD)inf , 8a 2 F(Src f); b 2 F(Dst f): (a �FCD b v f )

a�RLD bvX �RLD 1),8a2F(Src f); b2F(Dst f): (a�FCD bv f) avX );
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X w dom f ,X �RLD 1 w f ,X �FCD 1 w f , 8a 2 F(Src f); b 2 F(Dst f): (a �FCD b v f )
a�FCD bvX �FCD1),8a2F(Src f); b2F(Dst f): (a�FCD bv f) avX ).

Thus dom (RLD)inf =dom f . The rest follows from symmetry. �

Proposition 47. dom (RLD)¡f = dom f and im (RLD)¡f = im f for every funcoid f .

Proof. dom (RLD)¡f w dom f and im (RLD)¡f w im f because (RLD)¡f w (RLD)in and
dom (RLD)inf =dom f and im (RLD)inf = im f .

It remains to prove (as the rest follows from symmetry) that dom (RLD)¡f v dom f .
Really, dom (RLD)¡f v

dF fX 2 up dom f j X � 1 2 up f g =
dF fX 2 up dom f j X 2

up dom f g=
dF up dom f =dom f . �

Conjecture 48. For every funcoid g we have Cor (RLD)¡ g=(RLD)¡Cor g.

7 More on properties of funcoids

Proposition 49. ¡(A;B) is the center of lattice FCD(A;B).

Proof. See theorem 4.139 in [1]. �

Proposition 50. up¡(A;B) (A�FCDB) is de�ned by the �lter base fA�B j A2 upA; B 2 upBg
on the lattice ¡(A;B).

Proof. It follows from the fact that A�FCDB=
dFCD fA�B j A2upA; B 2 upBg. �

Proposition 51. up¡(A;B) (A�FCDB) =F(¡(A;B))\ (A�RLDB).

Proof. It follows from the fact that A�FCDB=
dFCD fA�B j A2upA; B 2 upBg. �

Proposition 52. For every f 2F(¡(A;B)):

1. f � f is de�ned by the �lter base fF �F j F 2 up f g (if A=B);

2. f¡1 � f is de�ned by the �lter base fF¡1 �F j F 2up f g;

3. f � f¡1 is de�ned by the �lter base fF �F¡1 j F 2 up f g.

Proof. I will prove only (1) and (2) because (3) is analogous to (2).

1. It's enough to show that 8F ;G2up f9H 2up f :H �H vG�F . To prove it take H=F uG.

2. It's enough to show that 8F ; G 2 up f9H 2 up f : H¡1 � H v G¡1 � F . To prove it take
H =F uG. Then H¡1 �H =(F uG)¡1 � (F uG)vG¡1 �F . �

Theorem 53. For every sets A, B, C if g; h2F¡(A;B) then

1. f � (gt h)= f � g t f �h;
2. (gt h) � f = g � f th � f .

Proof. It follows from the order isomorphism above, which preserves composition. �
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