Errata for “Filters on Posets and Generalizations” [1]

Proposition 7: “Every co-brouwerian lattice has least element” → “Every non-empty co-brouwerian lattice has least element”.

Proof of theorem 17: \((a \setminus b) \setminus c = \{ z \in \mathfrak{A} \mid a \setminus b \subseteq c \cup z \} \to (a \setminus b) \setminus c = \bigcap \{ z \in \mathfrak{A} \mid a \setminus b \subseteq c \cup z \}.

Corollary 17: “\(\mathfrak{F}\) is an atomically separable” → “\(\mathfrak{F}\) is atomically separable”.

Definition 38: “whenever \(\bigcup Z S\) exists for \(S \in \mathcal{P} A\)” → “whenever \(\bigcup Z S\) exists for \(S \in \mathcal{P} Z\)”.

Definition 39: “whenever \(\bigcap Z S\) exists for \(S \in \mathcal{P} A\)” → “whenever \(\bigcap Z S\) exists for \(S \in \mathcal{P} Z\)”.

Theorem 35: “for any \(F_0, F_m \in F\)” → “for any \(F_0, F_m \in F\)”.

Proof of theorem 45: “taken into account the theorems 10 and 29” → “taken into account the corollary 10 and theorem 23”.

Theorem 52: “\(a\) be prime” → “\(a\) is prime”.

Proof of theorem 52: “\(a\) is prime” → “\(a\) be prime”.

Theorem 54: “\(S \cap \partial F \neq 0\)” → “\(S \cap \partial F \neq \emptyset\)”.

Proof of theorem 56: “\(a \cup \mathfrak{F} b \in \mathfrak{S}\)” → “\(a \cup \mathfrak{F} b \in \mathfrak{S}\)” and “\(a \in \mathfrak{S} \cup b \in \mathfrak{S}\)” → “\(a \in \mathfrak{S} \cup b \in \mathfrak{S}\)”.

Proof of theorem 59: “used the theorems 29 and 29” → “used theorem 29”; “used the theorems 23 and 10” → “used theorem 23 and corollary 10”.

Theorem 65: “which is an atomistic lattice” → “which is a complete atomistic lattice”.

Theorem 68: “for every \(a, b \in \mathfrak{A}\)” → “for every \(a, b \in \mathfrak{A}\)”.

Proof of proposition 41: Replace all occurences of \(\mathfrak{A}\) → \(\mathfrak{F}\).

Not yet published in IJPAM

Theorem 47: “distributive lattice with least element 0” → “distributive lattice with greatest element”.

Proof of theorems 12: Messed \(\subseteq\) and \(\supseteq\).

Proof of theorem 55: \(\text{card } A \to \text{card } T\).

Proof of proposition 39: \(S \to [S]\).

Proposition 13: atoms \(a \subseteq a\) atoms \(b \Rightarrow a \subseteq b \Rightarrow a \subseteq a\) atoms \(b\).

Proof of theorem 4.53: Should read “We have \(L \cap \mathfrak{A} F \neq 0 \Rightarrow K L \cap \mathfrak{A} F \neq 0 \Rightarrow L \cap \mathfrak{A} F \neq 0 \Rightarrow L \cap \mathfrak{A} F \neq 0\)”.

Bibliography