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Abstract

Compact funcoids are defined. Under certain conditions it’s proved that the reloid corre-

sponding to a compact funcoid is the neighbourdhood of the diagonal of the product funcoid.

Preface

This is a rough partial draft. The proofs are with errors.

In order to understand it, first read my book [2] and this draft article [1].

The rest

Definition 1. A funcoid f is directly compact iff

∀F ∈F: (〈f 〉F � 0⇒Cor 〈f 〉F � 0).

Obvious 2. A funcoid f is directly compact iff ∀a∈ atoms dom f :Cor 〈f 〉a� 0.

Definition 3. A funcoid f is reversely compact iff f−1 is directly compact.

Definition 4. A funcoid is compact iff it is both directly compact and reversely compact.

Proposition 5.
∏RLD

a= ↑RLD
∏

i∈dom a
(↑RLD)−1ai for every indexed family a of principal filters.

Proof. Because
∏

i∈dom a
(↑RLD)−1ai∈GR

∏RLD
a. [TODO: More detailed proof.] �

Lemma 6.
∏

i∈dom a

RLD Cor ai=Cor
∏RLD

a.

Proof. Cor
∏RLD

a=
d

{↑RLD
∏

A | A ∈ up a}= ↑RLD
⋂

{
∏

A | A ∈ up a}= ↑RLD
⋂

{
∏

A | A ∈

P
∏

U, ∀i ∈ dom a: Ai ∈ up ai} = ↑RLD
⋂

{
∏ ⋂

Ki | K ∈ PP
∏

U, ∀i ∈ dom a:Ki ∈ P up ai} =

↑RLD
⋂

{
∏

(↑RLD)−1Corai | i∈doma}= ↑RLD
∏

i∈dom a

RLD Corai. [TODO: Check for little errors.] �

Corollary 7.
∏

i∈n

RLD 〈CoCompl fi〉X i=
〈

CoCompl
∏(A)

f
〉

∏RLD X for every n-indexed families

f of funcoids and X of filters on the same set (with Src fi=Base(X i) for every i∈n).
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Proof.

∏

i∈n

RLD

〈CoCompl fi〉X i =

∏

i∈n

RLD

Cor 〈fi〉X i =

Cor
∏

i∈n

RLD

〈fi〉 X i = (*)

Cor
∏

i∈n

RLD

〈fi〉Pri
RLD

(

∏

RLD

X

)

=

Cor

〈

∏

(A)

f

〉

∏

RLD

X =

〈

CoCompl
∏

(A)

f

〉

∏

RLD

X .

(*) You should verify the special case when X i=0F for some i. �

Theorem 8. Let f be an indexed family of funcoids. [TODO: Reverse theorem (for non-least
funcoids).]

1.
∏

f is directly compact if every fi is directly compact.

2.
∏

f is reversely compact if every fi is reversely compact.

3.
∏

f is compact if every fi is compact.

Proof. It is enough to prove only the first statement.

Let each fi is directly compact.

Let 〈
∏

f 〉a � 0. Then 〈
∏

f 〉a=
〈

∏(A)
f
〉

a=
∏

i∈dom f

RLD 〈fi〉Pri
RLD a. Thus every 〈fi〉Pri

RLD a �

0. Consequently by compactness Cor 〈fi〉Pri
RLD a � 0;

∏

i∈dom f
Cor 〈fi〉Pri

RLD a � 0;

Cor
∏

i∈dom f
〈fi〉Pri

RLD a� 0; Cor 〈
∏

f 〉a� 0.

So
∏

f is directly compact. �

I will denote ∆ the diagonal relation.

Proposition 9. The following expressions are pairwise equal:

1. 〈f × f 〉∗∆;

2.
⊔

{〈f × f 〉p | p∈ atoms∆};

3.
⊔

{〈f 〉x×RLD 〈f 〉x | x∈F};

4. (RLD)in
⊔

{〈f 〉x×FCD 〈f 〉x | x∈F};

5. (RLD)in
⊔

{f ◦ (x×FCD x) ◦ f−1 | x∈F};

6.
⊔

{((RLD)in f) ◦ (x×RLD x) ◦ ((RLD)in f)
−1 | x∈F}.
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7. (RLD)in(f
−1 ◦ f) [TODO: Use this below.]

Proof. ?? �

Proposition 10. Let g be a reloid and f =(FCD)g. Then 〈f × f 〉∗∆⊒ g.

Proof. 〈f × f 〉∗∆� ↑RLDY ⇔↑RLD∆[f × f ]↑RLDY ⇔↑FCD∆
[

f ×(C) f
]

↑FCDY ⇔ f ◦↑FCD∆◦ f−1
�

↑FCDY ⇔ f ◦ f−1
� ↑FCDY ⇔ f � ↑FCDY ⇔ f ⊓ ↑FCDY � 0 ⇐ (RLD)in(f ⊓ ↑FCDY ) � 0 ⇔

(RLD)in f ⊓ (RLD)in↑
FCDY � 0 ⇐ (RLD)in f ⊓ (RLD)out↑

FCDY � 0 ⇔ (RLD)in f ⊓ ↑RLDY � 0 ⇔

(RLD)in (FCD)g ⊓↑RLDY � 0⇐ g⊓ ↑RLDY � 0⇔ g � ↑RLDY . �

Proposition 11. Let f be a funcoid. Then V ◦M ◦V −1∈GR 〈f × f 〉∗M for every V ∈GR f .

Proof. V ◦M ◦V −1∈GR(f ◦ ↑M ◦ f−1)=GR
〈

f ×(C) f
〉

↑M ⊇GR 〈f × f 〉↑M =GR 〈f × f 〉∗M .
[FIXME: Wrong direction of ⊇.]

Because

↑FCDX �

〈

f ×(C) f
〉

↑FCDM ⇔ ↑RLDX � 〈f × f 〉↑RLDM ⇔ (FCD)(↑RLDX ⊓ 〈f × f 〉↑RLDM) � 0⇒

(FCD)↑RLDX ⊓ (FCD)〈f × f 〉↑RLDM � 0 ⇔ (FCD)↑RLDX � (FCD)〈f × f 〉↑RLDM ⇔ ↑FCDX �

(FCD)〈f × f 〉↑RLDM ;
〈

f ×(C) f
〉

↑FCDM ⊑ (FCD)〈f × f 〉↑RLDM

GR
〈

f ×(C) f
〉

↑FCDM ⊇GR (FCD)〈f × f 〉↑RLDM ⊇GR 〈f × f 〉↑RLDM �

Proposition 12. 〈f × f 〉∗M ⊑ g ◦ ↑RLDM ◦ g−1 whenever (FCD)g= f for a reloid g.

Proof. For every V ∈ GR g we have V ◦ M ◦ V −1 ∈ GR 〈f × f 〉∗M . Thus g ◦ ↑RLDM ◦ g−1 =d
{V ◦M ◦V −1 | V ∈GR g}⊒

d
GR 〈f × f 〉∗M =GR 〈f × f 〉∗M . �

Corollary 13. 〈f × f 〉∗M ⊑
〈

f ×(C) f
〉∗

M .

Corollary 14. V ◦V −1∈GR 〈f × f 〉∗∆; f ◦ f−1⊒〈f × f 〉∗∆.

Proof. ?? �

Lemma 15. Cor 〈f × f 〉∗g ⊑∆ if (FCD)g= f where (FCD)g= f for a T1-separable reloid g.

Proof. ?? �

Remark 16. I attempted to generalize the below theorem more than the standard general topology
theorem about correspondence of compact and uniform spaces, but haven’t really succeeded much,
as it appears to be needed that the reloid in question is reflexive, symmetric, and transitive, that
is just a uniform space as in the standard general topology.

Theorem 17. Let f be a T1-separable compact reflexive symmetric funcoid and g be a reloid such
that

1. (FCD)g= f ;

2. g ◦ g−1⊑ g.
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Then g= 〈f × f 〉∗∆.

Proof. From the above 〈f × f 〉∗∆⊑ g ◦ g−1⊑ g. [FIXME: Funcoids and reloids are confused.]

It’s remainded to prove g ⊑〈f × f 〉∗∆.

[FIXME: Possible errors.]

Suppose there is U ∈ xyGR 〈f × f 〉∗∆ such that U � GR g.

Then {V \U | V ∈GR g}= g \U would be a proper filter.

Thus by reflexivity 〈f × f 〉∗(g \U)� 0.

By compactness of f × f , Cor 〈f × f 〉∗(g \U)� 0.

Suppose ↑{(x; x)} ⊑ 〈f × f 〉∗(g \ U); then g \ U � 〈f−1 × f−1〉{(x; x)}; U ⊏ 〈f−1 × f−1〉{(x;

x)}⊑ 〈f−1× f−1〉∆ what is impossible.

Thus there exist x� y such that {(x; y)}⊑Cor 〈f × f 〉∗(g \U). Thus {(x; y)}⊑ 〈f × f 〉∗g.

Thus by the lemma {(x; y)}⊑∆ what is impossible. So U ∈GR g.

We have xyGR 〈f × f 〉∗∆⊆GR g; 〈f × f 〉∗∆⊒ g. �

Corollary 18. Let f is a T1-separable (the same as T2 for symmetric transitive) compact funcoid
and g is a uniform space (reflexive, symmetric, and transitive endoreloid) such that (FCD)g = f .
Then g= 〈f × f 〉∗∆.

An (incomplete) attempt to prove one more theorem follows:

Theorem 19. Let µ and ν be uniform spaces, (FCD)µ be a compact funcoid. Then a map f is a
continuous map from (FCD)µ to (FCD)ν iff f is a (uniformly) continuous map from µ to ν.

Proof. [FIXME: errors in this proof.]

We have µ= 〈(FCD)µ× (FCD)µ〉↑RLD∆

f ∈C?((FCD)µ; (FCD)ν). Then

f × f ∈C?((FCD)(µ× µ); (FCD)(ν × ν))

(f × f) ◦ (FCD)(µ× µ)⊑ (FCD)(ν × ν) ◦ (f × f)

For every V ∈GR(ν × ν) we have 〈g−1〉V ∈ 〈(FCD)(µ× µ)〉{y} for some y.

〈g−1〉V ∈ 〈(FCD)µ× (FCD)µ〉↑RLD∆=GR µ

〈g〉〈g−1〉V ⊑V

We need to prove f ∈ C(µ; ν) that is ∀p ∈ GR ν∃q ∈ GR µ: 〈f 〉q ⊑ p. But this follows from the
above. �
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