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CHAPTER 1

About this document

This file contains future addons for the free e-book “Algebraic General Topol-
ogy. Volume 1”, which are yet not enough ripe to be included into the book.

Theorem (including propositions, conjectures, etc.) numbers in this document
start from the last theorem number in the book plus one. Theorems references
inside this document are hyperlinked, but references to theorems in the book are
not hyperlinked (because PDF viewer Okular 0.20.2 does not support Backward
button after clicking a cross-document reference, and thus I want to avoid clicking
such links).

6



CHAPTER 2

Applications of algebraic general topology

1. “Hybrid” objects

Algebraic general topology allows to construct “hybrid” objects of “continuous”
(as topological spaces) and discrete (as graphs).

Consider for example D ⊔ T where D is a digraph and T is a topological space.
The n-th power (D ⊔T )n yields an expression with 2n terms. So treating D ⊔T

as one object (what becomes possible using algebraic general topology) rather than
the join of two objects may have an exponential benefit for simplicity of formulas.

2. A way to construct directed topological spaces

2.1. Some notation. I use E and ι notations from volume-2.pdf. FiXme:
Reorder document fragments to describe it before use.

I remind that f |X = f ◦ idX for binary relations, funcoids, and reloid.
f ∥X= f ◦ (EX)−1.
f□X = idX ◦f ◦ id−1

X .
As proved in volume-2.pdf, the following are bijections and moreover isomor-

phisms (for R being either funcoids or reloids or binary relations):
1◦.

{
(f |X ,f∥X )

f∈R

}
;

2◦.
{

(f□X,ιX f)
f∈R

}
.

As easily follows from these isomorphisms and theorem 1182:

Proposition 2111. For funcoids, reloids, and binary relations:
1◦. f ∈ C(µ, ν) ⇒ f ∥A∈ C(ιAµ, ν);
2◦. f ∈ C′(µ, ν) ⇒ f ∥A∈ C′(ιAµ, ν);
3◦. f ∈ C′′(µ, ν) ⇒ f ∥A∈ C′′(ιAµ, ν).

2.2. Directed line and directed intervals. Let A be a poset. We will
denote A = A∪ {−∞, +∞} the poset with two added elements −∞ and +∞, such
that +∞ is strictly greater than every element of A and −∞ is strictly less.

FiXme: Generalize from R to a wider class of posets.

Definition 2112. For an element a of a poset A

1◦. J≥(a) =
{

x∈A
x≥a

}
;

2◦. J>(a) =
{

x∈A
x>a

}
;

3◦. J≤(a) =
{

x∈A
x≤a

}
;

4◦. J<(a) =
{

x∈A
x<a

}
;

5◦. J̸=(a) =
{

x∈A
x ̸=a

}
.

Definition 2113. Let a be an element of a poset A.
1◦. ∆(a) =

dF
{

]x;y[
x,y∈A,x<a∧y>a

}
;

2◦. ∆≥(a) =
dF

{
[a;y[

y∈A,y>a

}
;
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2. A WAY TO CONSTRUCT DIRECTED TOPOLOGICAL SPACES 8

3◦. ∆>(a) =
dF

{
]a;y[

y∈A,x<a∧y>a

}
;

4◦. ∆≤(a) =
dF

{
]x;a]

x∈A,x<a

}
;

5◦. ∆<(a) =
dF

{
]x;a[

x∈A,x<a

}
;

6◦. ∆ ̸=(a) = ∆(a) \ {a}.

Obvious 2114.
1◦. ∆≥(a) = ∆(a) ⊓F @J≥(a);
2◦. ∆>(a) = ∆(a) ⊓F @J>(a);
3◦. ∆≤(a) = ∆(a) ⊓F @J≤(a);
4◦. ∆<(a) = ∆(a) ⊓F @J<(a);
5◦. ∆ ̸=(a) = ∆(a) ⊓F @J̸=(a).

Definition 2115. Given a partial order A and x ∈ A, the following defines
complete funcoids:

1◦. ⟨|A|⟩∗{x} = ∆(x);
2◦. ⟨|A|≥⟩∗{x} = ∆≥(x);
3◦. ⟨|A|>⟩∗{x} = ∆>(x);
4◦. ⟨|A|≤⟩∗{x} = ∆≤(x);
5◦. ⟨|A|<⟩∗{x} = ∆<(x);
6◦. ⟨|A|̸=⟩∗{x} = ∆̸=(x).

Proposition 2116. The complete funcoid corresponding to the order topol-
ogy1 is equal to |A|.

Proof. Because every open set is a finite union of open intervals, the com-
plete funcoid f corresponding to the order topology is described by the formula:
⟨f⟩∗{x} =

dF
{

]a;b[
a,b∈A,a<x∧b>x

}
= ∆(x) = ⟨|A|⟩∗{x}. Thus f = |A|. □

Exercise 2117. Show that |A|≥ (in general) is not the same as “right order
topology”2.

Proposition 2118.
1◦.

〈
|A|−1

≥

〉∗
@X = @

{
a∈A

∀y∈A:(y>a⇒X∩[a;y[̸=∅)

}
;

2◦.
〈
|A|−1

>

〉∗@X = @
{

a∈A

∀y∈A:(y>a⇒X∩]a;y[ ̸=∅)

}
;

3◦.
〈

|A|−1
≤

〉∗
@X = @

{
a∈A

∀x∈A:(x<a⇒X∩]x;a]̸=∅)

}
;

4◦.
〈
|A|−1

<

〉∗@X = @
{

a∈A

∀x∈A:(x<a⇒X∩]x;a[̸=∅)

}
.

Proof. a ∈
〈

|A|−1
≥

〉∗
@X ⇔ @{a} ̸≍

〈
|A|−1

≥

〉∗
@X ⇔ ⟨|A|≥⟩∗@{a} ̸≍ @X ⇔

∆≥(a) ̸≍ @X ⇔ ∀y ∈ A : (y > a ⇒ X ∩ [a; y[ ̸= ∅).
a ∈

〈
|A|−1

>

〉∗@X ⇔ @{a} ̸≍
〈
|A|−1

>

〉∗@X ⇔ ⟨|A|>⟩∗@{a} ̸≍ @X ⇔ ∆>(a) ̸≍
@X ⇔ ∀y ∈ A : (y > a ⇒ X∩]a; y[ ̸= ∅).

The rest follows from duality. □

Remark 2119. On trivial ultrafilters these obviously agree:
1◦. ⟨|R|≥⟩∗{x} = ⟨|R|⊓ ≥⟩∗{x};
2◦. ⟨|R|>⟩∗{x} = ⟨|R|⊓ >⟩∗{x};
3◦. ⟨|R|≤⟩∗{x} = ⟨|R|⊓ ≤⟩∗{x};
4◦. ⟨|R|<⟩∗{x} = ⟨|R|⊓ <⟩∗{x}.

1See Wikipedia for a definition of “Order topology”.
2See Wikipedia
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Corollary 2120.
1◦. |R|≥ = Compl(|R|⊓ ≥);
2◦. |R|> = Compl(|R|⊓ >);
3◦. |R|≤ = Compl(|R|⊓ ≤);
4◦. |R|< = Compl(|R|⊓ <).

Obvious 2121. FiXme: also what is the values of \ operation
1◦. |R|≥ = |R|> ⊔ 1;
2◦. |R|≤ = |R|< ⊔ 1.

3. Some inequalities

FiXme: Define the ultrafilter “at the left” and “at the right” of a real number.
Also define “convergent ultrafilter”.

Denote ∆+∞ =
d

x∈R]x; +∞[ and ∆−∞ =
d

x∈R] − ∞; x[.
The following proposition calculates ⟨≥⟩x and ⟨>⟩x for all kinds of ultrafilters

on R:

Proposition 2122.
1◦. ⟨≥⟩{α} = [α; +∞[ and ⟨>⟩{α} =]α; +∞[.
2◦. ⟨≥⟩x = ⟨>⟩x =]α; +∞[ for ultrafilter x at the right of a number α.
3◦. ⟨≥⟩x = ⟨>⟩x = ∆<(α)⊔ [α; +∞[= ∆≤(α)⊔]α; +∞[ for ultrafilter x at the

left of a number α.
4◦. ⟨≥⟩x = ⟨>⟩x = ∆+∞ for ultrafilter x at positive infinity.
5◦. ⟨≥⟩x = ⟨>⟩x = R for ultrafilter x at negative infinity.

Proof.
1◦. Obvious.
2◦.

⟨≥⟩x =
Fl

X∈up x

⟨≥⟩(X⊓]α; +∞[) =
Fl

X∈up x

]α; +∞[=]α; +∞[;

⟨>⟩x =
Fl

X∈up x

⟨>⟩(X⊓]α; +∞[) =
Fl

X∈up x

]α; +∞[=]α; +∞[.

3◦. ∆<(α) ⊔ [α; +∞[= ∆≤(α)⊔]α; +∞[ is obvious.

⟨>⟩x =
Fl

X∈up x

⟨>⟩X ⊒
Fl

X∈up x

(∆<(α)⊔]α; +∞[) = ∆<(α)⊔]α; +∞[

but ⟨≥⟩x ⊑ ∆<(α) ⊔ [α; +∞[ is obvious. It remains to take into account that
⟨>⟩x ⊑ ⟨≥⟩x.

4◦. ⟨≥⟩x =
dF

X∈up x⟨≥⟩X =
dF

X∈up x,inf X∈X⟨≥⟩(X⊓]α; +∞[) =
dF

X∈up x[inf X; +∞[=
dF

x>α[x; +∞[= ∆+∞; ⟨>⟩x =
dF

X∈up x⟨>⟩X =
dF

X∈up x,inf X∈X⟨>⟩(X⊓]α; +∞[) =
dF

X∈up x] inf X; +∞[=
dF

x>α[x; +∞[= ∆+∞.
5◦. ⟨≥⟩x ⊒ ⟨>⟩x =

dF
X∈up x⟨>⟩X but ⟨>⟩X =] − ∞; +∞[ for X ∈ up x

because X has arbitrarily small elements.
□

Lemma 2123. ⟨|R|⟩x ⊑ ⟨>⟩x = ⟨≥⟩x for every nontrivial ultrafilter x.

Proof. ⟨>⟩x = ⟨≥⟩x follows from the previous proposition.
⟨|R|⟩x =

d
X∈up x⟨|R|⟩X =

d
X∈up x dy∈X ∆(y).

Consider cases:
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x is an ultrafilter at the right of some number α.
⟨|R|⟩x =

d
X∈up x dy∈X⊓]α;+∞[ ∆(y) ⊑]α; +∞[= ⟨≥⟩x because

dy∈X⊓]α;+∞[ ∆(y) ⊑]α; +∞[.
x is an ultrafilter at the left of some number α.

⟨|R|⟩x ⊑ ∆(α) is obvious. But ⟨≥⟩x ⊒ ∆(α).
x is an ultrafilter at positive infinity.

⟨|R|⟩x ⊑ ∆+∞ is obvious. But ⟨≥⟩x = ∆+∞.
x is an ultrafilter at negative infinity.

Because ⟨≥⟩x = R.
□

Corollary 2124. ⟨|R|⊓ ≥⟩x = ⟨|R|⟩x for every nontrivial ultrafilter x.

Proof. ⟨|R|⊓ ≥⟩x = ⟨|R|⟩ ⊓ ⟨≥⟩x = ⟨|R|⟩x. □

So ⟨|R|⊓ ≥⟩ and ⟨|R|⟩ agree on all ultrafilters except trivial ones.

Proposition 2125. |R|>⊓ >= |R|>⊓ ≥= |R|>.

Proof. |R|> ⊑ > because ⟨|R|>⟩∗
x ⊑ ⟨>⟩∗

x and |R|> is a complete funcoid.
□

Lemma 2126. ⟨|R|>⟩x ⊏ ⟨|R|≥⟩x for a nontrivial ultrafilter x.

Proof. It enough to prove ⟨|R|>⟩x ̸= ⟨|R|≥⟩x.
Take x be an ultrafilter with limit point 0 on im z where z is the sequence

n 7→ 1
n .

⟨|R|>⟩x ⊑ ⟨|R|>⟩∗ im z = l

n∈im z

∆>

(
1
n

)
⊑ l

n∈im z

]
1
n

; 1
n − 1 − 1

n

[
≍ im z.

Thus ⟨|R|>⟩x ≍ im z. But ⟨|R|≥⟩x ⊑ ⟨=⟩x ̸≍ im z. □

Corollary 2127. |R|> ⊏ |R|≥.

Proposition 2128. |R|> ⊏ |R|≥⊓ >.

Proof. It’s enough to prove |R|> ̸= |R|≥⊓ >.
Really, ⟨|R|≥⊓ >⟩x = ⟨|R|≥⟩x ̸= ⟨|R|>⟩x (lemma). □

Proposition 2129.
1◦. |R|≥ ◦ |R|≥ = |R|≥;
2◦. |R|> ◦ |R|> = |R|>;
3◦. |R|≥ ◦ |R|> = |R|>;
4◦. |R|> ◦ |R|≥ = |R|>.

Proof. ?? □

Conjecture 2130.
1◦. (|R| ⊓ ≥) ◦ (|R| ⊓ ≥) = |R| ⊓ ≥.
2◦. (|R| ⊓ >) ◦ (|R| ⊓ >) = |R| ⊓ >.

4. Continuity

I will say that a property holds on a filter A iff there is A ∈ up A on which the
property holds.

FiXme: f ∈ C(A, B) ∧ f ∈ C(ιA|R|≥, ιB |R|≥) ⇔ (f, f) ∈
C((A, ιA|R|≥), (B, ιB |R|≥))
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Lemma 2131. Let function f : A → B where A, B ∈ PR and ιA|R| is con-
nected.

1◦. f is monotone and f ∈ C(ιA|R|, ιB |R|) iff f ∈ C(ιA|R|, ιB |R|) ∩
C(ιA|R|≥, ιB |R|≥) iff f ∈ C(ιA|R|, ιB |R|) ∩ C(ιA|R|>, ιB |R|≥) iff f ∈
C(ιA|R|≥, ιB |R|≥) ∩ C(ιA|R|≤, ιB |R|≤).

2◦. f is strictly monotone and f ∈ C(ιA|R|, ιB |R|) iff f ∈ C(ιA|R|, ιB |R|) ∩
C(ιA|R|>, ιB |R|>) iff f ∈ C(ιA|R|>, ιB |R|>) ∩ C(ιA|R|<, ιB |R|<).

FiXme: Generalize for arbitrary posets. FiXme: Generalize for f being a funcoid.
FiXme: Can add more conditions with <.

Proof. Because f is continuous, we have ⟨f ◦ ιA|R|⟩∗{x} ⊑ ⟨ιB |R| ◦ f⟩∗{x}
that is ⟨f⟩∗(A ⊓ ∆(x)) ⊑ B ⊓ ∆(f(x)) for every x ∈ A.

If f is monotone, we have ⟨f⟩∗∆≥(x) ⊑ [f(x); ∞[. Thus ⟨f⟩∗(A ⊓
∆≥(x)) ⊑ B ⊓ ∆≥(f(x)), that is ⟨f ◦ ιA|R|≥⟩∗{x} ⊑ ⟨ιB |R|≥ ◦ f⟩∗{x}, thus
f ∈ C(ιA|R|≥, ιB |R|≥).

If f is strictly monotone, we have ⟨f⟩∗∆>(x) ⊑]f(x); ∞[. Thus
⟨f⟩∗∆>(x) ⊑ ∆>(f(x)), that is ⟨f ◦ ιA|R|>⟩∗{x} ⊑ ⟨ιB |R|> ◦ f⟩∗{x}, thus f ∈
C(ιA|R|>, ιB |R|>).

Let now f ∈ C(ιA|R|≥, ιB |R|≥).
Take any a ∈ A and let c = sup

{
b∈B

b≥a,∀x∈[a;b[:f(x)≥f(a)

}
(makes sense because

A is connected). It’s enough to prove that c is the right endpoint (finite or infinite)
of A.

Indeed by continuity f(a) ≤ f(c) and if c is not already the right endpoint of A,
then there is b′ > c such that ∀x ∈ [c; b′[: f(x) ≥ f(c) (makes sense because A is
connected). So we have ∀x ∈ [a; b′[: f(x) ≥ f(c) what contradicts to the above.

So f is monotone on the entire A.
f ∈ C(ιA|R|≥, ιB |R|≥) ⇒ f ∈ C(ιA|R|>, ιB |R|≥) is obvious. Reversely f ∈

C(ιA|R|>, ιB |R|≥) ⇔ f ◦ ιA|R|> ⊑ ιB |R|≥ ◦ f ⇔ ∀x ∈ A : ⟨f⟩⟨ιA|R|>⟩∗{x} ⊑
⟨ιB |R|≥⟩∗⟨f⟩∗{x} ⇔ ∀x ∈ A : ⟨f⟩(A ⊓ ∆>(x)) ⊑ B ⊓ ∆≥f(x) ⇔ ∀x ∈ A : ⟨f⟩(A ⊓
∆>(x)) ⊔ {f(x)} ⊑ B ⊓ ∆≥f(x) ⇔ ∀x ∈ A : ⟨f⟩((A ⊓ ∆>(x)) ⊔ {x}) ⊑ B ⊓
∆≥f(x) ⇔ ∀x ∈ A : ⟨f⟩(A ⊓ ∆≥(x)) ⊑ B ⊓ ∆≥f(x) ⇔ ∀x ∈ A : ⟨f⟩⟨ιA|R|≥⟩∗{x} ⊑
⟨ιB |R|≥⟩∗⟨f⟩∗{x} ⇔ f ◦ ιA|R|≥ ⊑ ιB |R|≥ ◦ f ⇔ f ∈ C(ιA|R|≥, ιB |R|≥).

Let f ∈ C(ιA|R|>, ιB |R|>). Then f ∈ C(ιA|R|>, ιB |R|≥) and thus it is mono-
tone. We need to prove that f is strictly monotone. Suppose the contrary. Then
there is a nonempty interval [p; q] ⊆ A such that f is constant on this interval. But
this is impossible because f ∈ C(ιA|R|>, ιB |R|>).

Prove that f ∈ C(ιA|R|≥, ιB |R|≥) ∩ C(ιA|R|≤, ιB |R|≤) implies f ∈ C(A, B).
Really, it implies ⟨f⟩(A⊓∆≤(x)) ⊑ B ⊓∆≤(fx) and ⟨f⟩(A⊓∆≥(x)) ⊑ B ⊓∆≥(fx)
thus ⟨f⟩(A ⊓ ∆(x)) = ⟨f⟩(A ⊓ (∆≤(x) ⊔ {x} ⊔ ∆≥(x))) ⊑ B ⊓ (∆≤f(x) ⊔ {f(x)} ⊔
∆≥f(x)) = B ⊓ ∆(f(x)).

Prove that f ∈ C(ιA|R|>, ιB |R|>) ∩ C(ιA|R|<, ιB |R|<) f ∈ C(A, B). Really, it
implies ⟨f⟩(A ⊓ ∆<(x)) ⊑ B ⊓ ∆<(fx) and ⟨f⟩(A ⊓ ∆>(x)) ⊑ B ⊓ ∆>(fx) thus
⟨f⟩(A⊓∆(x)) = ⟨f⟩(A⊓(∆<(x)⊔{x}⊔∆>(x))) ⊑ B⊓(∆<f(x)⊔{f(x)}⊔∆>f(x)) =
B ⊓ ∆(f(x)). □

Theorem 2132. FiXme: Counterexample: https://math.stackexchange.com/
a/3702872/4876 Let function f : A → B where A, B ∈ PR.

1◦. f is locally monotone and f ∈ C(ιA|R|, ιB |R|) iff f ∈ C(ιA|R|, ιB |R|) ∩
C(ιA|R|≥, ιB |R|≥) iff f ∈ C(ιA|R|, ιB |R|) ∩ C(ιA|R|>, ιB |R|≥) iff f ∈
C(ιA|R|≥, ιB |R|≥) ∩ C(ιA|R|≤, ιB |R|≤).

https://math.stackexchange.com/a/3702872/4876
https://math.stackexchange.com/a/3702872/4876
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2◦. f is locally strictly monotone and f ∈ C(ιA|R|, ιB |R|) iff f ∈
C(ιA|R|, ιB |R|) ∩ C(ιA|R|>, ιB |R|>) iff f ∈ C(ιA|R|>, ιB |R|>) ∩
C(ιA|R|<, ιB |R|<).

Proof. By the lemma it is (strictly) monotone on each connected component.
FiXme: It is not enough if for example A = Q. □

See also related math.SE questions:
1◦. http://math.stackexchange.com/q/1473668/4876
2◦. http://math.stackexchange.com/a/1872906/4876
3◦. http://math.stackexchange.com/q/1875975/4876

4.1. Directed topological spaces. Directed topological spaces are defined
at
http://ncatlab.org/nlab/show/directed+topological+space

Definition 2133. A directed topological space (or d-space for short) is a pair
(X, d) of a topological space X and a set d ⊆ C([0; 1], X) (called directed paths or
d-paths) of paths in X such that

1◦. (constant paths) every constant map [0; 1] → X is directed;
2◦. (reparameterization) d is closed under composition with increasing con-

tinuous maps [0; 1] → [0; 1];
3◦. (concatenation) d is closed under path-concatenation: if the d-paths a,

b are consecutive in X (a(1) = b(0)), then their ordinary concatenation
a + b is also a d-path

(a + b)(t) = a(2t), if 0 ≤ t ≤ 1
2 ,

(a + b)(t) = b(2t − 1), if 1
2 ≤ t ≤ 1.

I propose a new way to construct a directed topological space. My way is more
geometric/topological as it does not involve dealing with particular paths.

Definition 2134. Let T be the complete endofuncoid corresponding to a topo-
logical space and ν ⊑ T be its “subfuncoid”. The d-space (dir)(T, ν) induced by
the pair (T, ν) consists of T and paths f ∈ C([0; 1], T ) ∩ C(|[0; 1]|≥, ν) such that
f(0) = f(1).

Proposition 2135. It is really a d-space.

Proof. Every d-path is continuous.
Constant path are d-paths because ν is reflexive.
Every reparameterization is a d-path because they are C(|[0; 1]|≥, ν) and we

can apply the theorem about composition of continuous functions.
Every concatenation is a d-path. Denote f0 = λt ∈ [0; 1

2 ] : a(2t) and f1 = λt ∈
[ 1

2 ; 1] : b(2t − 1). Obviously f0, f1 ∈ C([0; 1], µ) ∩ C(|[0; 1]|≥, ν). Then we conclude
that a + b = f1 ⊔ f1 is in f0, f1 ∈ C([0; 1], µ) ∩ C(|[0; 1]|≥, ν) using the fact that the
operation ◦ is distributive over ⊔. □

Below we show that not every d-space is induced by a pair of an endofuncoid
and its subfuncoid. But are d-spaces not represented this way good anything except
counterexamples?

Let now we have a d-space (X, d). Define funcoid ν corresponding to the d-
space by the formula ν = da∈d(a ◦ |R|≥ ◦ a−1).

Example 2136. The two directed topological spaces, constructed from a fixed
topological space and two different reflexive funcoids, are the same.

http://math.stackexchange.com/q/1473668/4876
http://math.stackexchange.com/a/1872906/4876
http://math.stackexchange.com/q/1875975/4876
http://ncatlab.org/nlab/show/directed+topological+space
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Proof. Consider the indiscrete topology T on R and the funcoids 1FCD(R,R)

and 1FCD(R,R) ⊔({0}×FCD ∆≥). The only d-paths in both these settings are constant
functions. □

Example 2137. A d-space is not determined by the induced funcoid.

Proof. The following a d-space induces the same funcoid as the d-space of all
paths on the plane.

Consider a plane R2 with the usual topology. Let d-paths be paths lying inside
a polygonal chain (in the plane). □

Conjecture 2138. A d-path a is determined by the funcoids (where x spans
[0; 1])

(λt ∈ R : a(x + t))|∆(0).

5. A way to construct directed topological spaces

I propose a new way to construct a directed topological space. My way is more
geometric/topological as it does not involve dealing with particular paths.

Conjecture 2139. Every directed topological space can be constructed in the
below described way.

Consider topological space T and its subfuncoid F (that is F is a funcoid
which is less that T in the order of funcoids). Note that in our consideration F is
an endofuncoid (its source and destination are the same).

Then a directed path from point A to point B is defined as a continuous function
f from [0; 1] to F such that f(0) = A and f(1) = B. FiXme: Specify whether the
interval [0; 1] is treated as a proximity, pretopology, or preclosure.

Because F is less that T , we have that every directed path is a path.

Conjecture 2140. The two directed topological spaces, constructed from a
fixed topological space and two different funcoids, are different.

For a counter-example of (which of the two?) the conjecture consider funcoid
T ⊓ (Q ×FCD Q) where T is the usual topology on real line.We need to consider
stability of existence and uniqueness of a path under transformations of our funcoid
and under transformations of the vector field. Can this be a step to solve Navier-
Stokes existence and smoothness problems?

6. Integral curves

We will consider paths in a normed vector space V .

Definition 2141. Let D be a connected subset of R. A path is a function
D → V .

Let d be a vector field in a normed vector space V .

Definition 2142. Integral curve of a vector field d is a differentiable function
f : D → V such that f ′(t) = d(f(t)) for every t ∈ D.

Definition 2143. The definition of right side integral curve is the above defi-
nition with right derivative of f instead of derivative f ′. Left side integral curve is
defined similarly.
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6.1. Path reparameterization. C1 is a function which has continuous de-
rivative on every point of the domain.

By D1 I will denote a C1 function whose derivative is either nonzero at every
point or is zero everywhere.

Definition 2144. A reparameterization of a C1 path is a bijective C1 function
ϕ : D → D such that ϕ′(t) > 0. A curve f2 is called a reparametrized curve f1 if
there is a reparameterization ϕ such that f2 = f1 ◦ ϕ.

It is well known that this defines an equivalence relation of functions.

Proposition 2145. Reparameterization of D1 function is D1.

Proof. If the function has zero derivative, it is obvious.
Let f1 has everywhere nonzero derivative. Then f ′

2(t) = f ′
1(ϕ(t))ϕ′(t) what is

trivially nonzero. □

Definition 2146. Vectors p and q have the same direction (p ⇈ q) iff there
exists a strictly positive real c such that p = cq.

Obvious 2147. Being same direction is an equivalence relation.

Obvious 2148. The only vector with the same direction as the zero vector is
zero vector.

Theorem 2149. A D1 function y is some reparameterization of a D1 integral
curve x of a continuous vector field d iff y′(t) ⇈ d(y(t)) that is vectors y′(t) and
d(y(t)) have the same direction (for every t).

Proof. If y is a reparameterization of x, then y(t) = x(ϕ(t)). Thus y′(t) =
x′(ϕ(t))ϕ′(t) = d(x(ϕ(t)))ϕ′(t) = d(y(t))ϕ′(t). So y′(t) ⇈ d(y(t)) because ϕ′(t) > 0.

Let now x′(t) ⇈ d(x(t)) that is that is there is a strictly positive function c(t)
such that x′(t) = c(t)d(x(t)).

If x′(t) is zero everywhere, then d(x(t)) = 0 and thus x′(t) = d(x(t)) that is x
is an Integral curve. Note that y is a reparameterization of itself.

We can assume that x′(t) ̸= 0 everywhere. Then F (x(t)) ̸= 0. We have that
c(t) = ||x′(t)||

||d(x(t))|| is a continuous function. FiXme: Does it work for non-normed
spaces?

Let y(u(t)) = x(t), where

u(t) =
∫ t

0
c(s)ds,

which is defined and finite because c is continuous and monotone (thus having
inverse defined on its image) because c is positive.

Then
y′(u(t))u′(t) = x′(t)

= c(t)d(x(t)), so
y′(u(t))c(t) = c(t)d(y(u(t)))

y′(u(t)) = d(y(u(t)))

and letting s = u(t) we have y′(s) = d(y(s)) for a reparameterization y of x. □

6.2. Vector space with additional coordinate. Consider the normed vec-
tor space with additional coordinate t.

Our vector field d(t) induces vector field d̂(t, v) = (1, d(v)) in this space. Also
f̂(t) = (t, f(t)).
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Proposition 2150. Let f be a D1 function. f is an integral curve of d iff f̂ is
a reparametrized integral curve of d̂.

Proof. First note that f̂ always has a nonzero derivative. f̂ ′(t) ⇈ d̂(f̂(t)) ⇔
(1, f ′(t)) ⇈ (1, d(f(t))) ⇔ f ′(t) = d(f(t)). □

Thus we have reduced (for D1 paths) being an integral curve to being a
reparametrized integral curve. We will also describe being a reparametrized in-
tegral curve topologically (through funcoids).

6.3. Topological description of C1 curves. Explicitly construct this fun-
coid as follows:

R(d, ϕ) =
{

v∈V

v̂d<ϕ,v ̸=0

}
for d ̸= 0 and R(0, ϕ) = {0}, where âb is the angle

between the vectors a and b, for a direction d and an angle ϕ.

Definition 2151. W (d) =
dRLD

{
R(d,ϕ)

ϕ∈R,ϕ>0

}
⊓

dRLD
r>0 Br(0). FiXme: This is

defined for infinite dimensional case. FiXme: Consider also FCD instead of RLD.

Proposition 2152. For finite dimensional case Rn we have W (d) =
dRLD

{
R(d,ϕ)

ϕ∈R,ϕ>0

}
⊓ ∆(RLD)n where

∆(RLD)n = ∆ ×RLD · · · ×RLD ∆︸ ︷︷ ︸
n times

.

Proof. ?? □

Finally our funcoids are the complete funcoids Q+ and Q− described by the
formulas

⟨Q+⟩∗@{p} = ⟨p+⟩W (d(p)) and ⟨Q−⟩∗@{p} = ⟨p+⟩W (−d(p)).
Here ∆ is taken from the “counter-examples” section.

In other words,

Q+ = l

p∈R
(@{p} ×FCD ⟨p+⟩W (d(p))); Q− = l

p∈R
(@{p} ×FCD ⟨p+⟩W (−d(p))).

That is ⟨Q+⟩∗@{p} and ⟨Q−⟩∗@{p} are something like infinitely small spherical
sectors (with infinitely small aperture and infinitely small radius).

FiXme: Describe the co-complete funcoids reverse to these complete funcoids.

Theorem 2153. A D1 curve f is an reparametrized integral curve for a direc-
tion field d iff f ∈ C(ιD|R|>, Q+) ∩ C(ιD|R|<, Q−).

Proof. Equivalently transform f ∈ C(ιD|R|, Q+); f ◦ ιD|R| ⊑ Q+ ◦ f ;
⟨f ◦ ιD|R|⟩∗@{t} ⊑ ⟨Q+ ◦ f⟩∗@{t}; ⟨f⟩∗∆>(t) ⊓ D ⊑ ⟨Q+⟩∗

f(t); ⟨f⟩∗∆>(t) ⊑
⟨Q+⟩∗

f(t); ⟨f⟩∗∆>(t) ⊑ f(t) + W (D(f(t))); ⟨f⟩∗∆>(t) − f(t) ⊑ W (D(f(t)));
∀r > 0, ϕ > 0∃δ > 0 : ⟨f⟩∗(]t; t + δ[) − f(t) ⊆ R(d(f(t)), ϕ) ∩ Br(f(t));

∀r > 0, ϕ > 0∃δ > 0∀0 < γ < δ : ⟨f⟩∗(]t; t + γ[) − f(t) ⊆ R(d(f(t)), ϕ) ∩ Br(f(t));

∀r > 0, ϕ > 0∃δ > 0∀0 < γ < δ : ⟨f⟩∗(]t; t + γ[) − f(t)
γ

⊆ R(d(f(t)), ϕ)∩Br/δ(f(t));

∀r > 0, ϕ > 0∃δ > 0 : ∂+f(t) ⊆ R(d(f(t)), ϕ) ∩ Br/δ(f(t));
∀r > 0, ϕ > 0 : ∂+f(t) ⊆ R(d(f(t)), ϕ);

∂+f(t) ⇈ d(f(t))
where ∂+ is the right derivative.

In the same way we derive that C(|R|<, Q−) ⇔ ∂−f(t) ⇈ d(f(t)).
Thus f ′(t) ⇈ d(f(t)) iff f ∈ C(|R|>, Q+) ∩ C(|R|<, Q−). □
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6.4. Cn curves. We consider the differential equation f ′(t) = d(f(t)).
We can consider this equation in any topological vector space V (https://en.

wikipedia.org/wiki/Frechet_derivative), see also https://math.stackexchange.com/
q/2977274/4876. Note that I am not an expert in topological vector spaces and
thus my naive generalizations may be wrong in details.

n-th derivative f (n)(t) = dn(f(t)); f (n+1)(t) = d′
n(f(t)) ◦ f ′(t) = d′

n(f(t)) ◦
d(f(t)). So dn+1(y) = d′

n(y) ◦ d(y).
Given a point y ∈ V define

Rn(y) =

 v ∈ V

v̂d0(y) < d1
1! (y)|v| + d2(y)

2! |v|2 + · · · + dn−1(y)
(n−1)! |v|n−1 + O(|v|n), v ̸= 0


for d0(y) ̸= 0 and Rn = {0} if d0(y) = 0.

Definition 2154. R∞(y) = R0(y) ⊓ R1(y) ⊓ R2(y) ⊓ . . . .

FiXme: It does not work: https://math.stackexchange.com/a/2978532/4876.

Definition 2155. W n(y) = Rn(y) ⊓
dRLD

r>0 Br(0); W ∞(y) = R∞(y) ⊓
dRLD

r>0 Br(0).

Finally our funcoids are the complete funcoids Qn
+ and Qn

− described by the
formulas 〈

Qn
+

〉∗@{p} = ⟨p+⟩W n(p) and
〈
Qn

−
〉∗@{p} = ⟨p+⟩W −n(p)

where W − is W for the reverse vector field −d(y).
FiXme: Related questions: http://math.stackexchange.com/q/1884856/4876

http://math.stackexchange.com/q/107460/4876 http://mathoverflow.net/q/88501

Lemma 2156. Let for every x in the domain of the path for small t > 0 we
have f(x + t) ∈ Rn(F (f(x))) and f(x − t) ∈ Rn(−F (f(x))). Then f is Cn smooth.

Proof. FiXme: Not yet proved!
See also http://math.stackexchange.com/q/1884930/4876. □

Conjecture 2157. A path f is conforming to the above differentiable equa-
tion and Cn (where n is natural or infinite) smooth iff f ∈ C(ιD|R|>, Qn

+) ∩
C(ιD|R|<, Qn

−).

Proof. Reverse implication follows from the lemma.
Let now a path f is Cn. Then

f(x + t) =
n∑

i=0
f (i)(x) ti

i! + o(ti) = f(x) + f ′(x)t +
n∑

i=2
f (i)(x) ti

i! + o(ti)

□

6.5. Plural funcoids. Take I+ and Q+ as described above in forward direc-
tion and I− and Q− in backward direction. Then

f ∈ C(I+, Q+) ∧ f ∈ C(I−, Q−) ⇔ f × f ∈ C(I+ ×(A) I−, Q+ ×(A) Q−)?

To describe the above we can introduce new term plural funcoids. This is
simply a map from an index set to funcoids. Composition is defined component-
wise. Order is defined as product order. Well, do we need this? Isn’t it the same
as infimum product of funcoids?

https://en.wikipedia.org/wiki/Frechet_derivative
https://en.wikipedia.org/wiki/Frechet_derivative
https://math.stackexchange.com/q/2977274/4876
https://math.stackexchange.com/q/2977274/4876
https://math.stackexchange.com/a/2978532/4876
http://math.stackexchange.com/q/1884856/4876
http://math.stackexchange.com/q/107460/4876
http://mathoverflow.net/q/88501
http://math.stackexchange.com/q/1884930/4876
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6.6. Multiple allowed directions per point.

⟨Q⟩∗@{p} = l

d∈d(p)

⟨p+⟩W (d).

It seems (check!) that solutions not only of differential equations but also of
difference equations can be expressed as paths in funcoids.



CHAPTER 3

Covers

Let S be a set of filters.
The corresponding funcoid (check that it is funcoid??) is defined as ⟨f⟩a =d

X ∈S,a ̸≍X X for atomic filters a.
A whole defined way to transform a cover into a a funcoid:

f = l

X ∈S,a∈atoms X
(a ×(FCD) a) = l

X ∈S,C⊑X

(C ×(FCD) C).

Is it possible ⟨f⟩a ̸=
d

X ∈S,a ̸≍X X ?

18



CHAPTER 4

More on generalized limit

Definition 2158. I will call a permutation group fixed point free when every
element of it except of identity has no fixed points.

Definition 2159. A funcoid f is Kolmogorov when ⟨f⟩∗{x} ̸= ⟨f⟩∗{y} for
every distinct points x, y ∈ dom f .

1. Hausdorff funcoids

Definition 2160. Limit lim F = x of a filter F regarding funcoid f is such a
point that ⟨f⟩∗{x} ⊒ F .

Definition 2161. Hausdorff funcoid is such a funcoid that every proper filter
on its image has at most one limit.

Proposition 2162. The following are pairwise equivalent for every funcoid f :
1◦. f is Hausdorff.
2◦. x ̸= y ⇒ ⟨f⟩∗{x} ≍ ⟨f⟩∗{y}.

Proof.
1◦⇒2◦. If 2◦ does not hold, then there exist distinct points x and y such that

⟨f⟩∗{x} ̸≍ ⟨f⟩∗{y}. So x and y are both limit points of ⟨f⟩∗{x}⊓⟨f⟩∗{y},
and thus f is not Hausdorff.

2◦⇒1◦. Suppose F is proper.
⟨f⟩∗{x} ⊒ F ∧ ⟨f⟩∗{y} ⊒ F ⇒ ⟨f⟩∗{x} ̸≍ ⟨f⟩∗{y} ⇒ x = y.

□

Corollary 2163. Every entirely defined Hausdorff funcoid is Kolmogorov.

Remark 2164. It is enough to be “almost entirely defined” (having nonempty
value everywhere except of one point).

Obvious 2165. For a complete funcoid induced by a topological space this
coincides with the traditional definition of a Hausdorff topological space.

2. Restoring functions from limit

Consider alternative definition of generalized limit:
xlim f = λr ∈ G : ν ◦ f◦ ↑ r.

Or:

xlima f =
{

(
〈
r−1〉∗

a, ν ◦ f◦ ↑ r)
r ∈ G

}
(note this requires explicit filter in the definition of generalized limit).

Operations on the set of generalized limits can be defined (twice) pointwise.
FiXme: First define operations on funcoids.

Proposition 2166. The above defined xlim⟨µ⟩∗{x} f is a monovalued function
if µ is Kolmogorov and G is fixed point free.

19
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Proof. We need to prove
〈
r−1〉

⟨µ⟩∗{x} ≠
〈
s−1〉

⟨µ⟩∗{x} for r, s ∈ G, r ̸= s.
Really, by definition of generalized limit, they commute, so our formula is equivalent
to ⟨µ⟩∗〈

r−1〉∗{x} ̸= ⟨µ⟩∗〈
s−1〉∗{x}; ⟨µ⟩∗〈

r−1 ◦ s
〉∗〈

s−1〉∗{x} ̸= ⟨µ⟩∗〈
s−1〉∗{x}.

But r−1 ◦ s ̸= e, so because it is fixed point free,
〈
r−1 ◦ s

〉∗〈
s−1〉∗{x} ≠

〈
s−1〉∗{x}

and thus by kolmogorovness, we have the thesis. □

Lemma 2167. Let µ and ν be Hausdorff funcoids. If function f is defined at
point x, then

fx = lim
〈
(xlim⟨µ⟩∗{x} f)⟨µ⟩∗{x}

〉∗{x}

Remark 2168. The right part is correctly defined because xlima f is monoval-
ued.

Proof. lim
〈
(xlim⟨µ⟩∗{x} f)⟨µ⟩∗{x}

〉∗{x} = lim⟨ν ◦ f⟩∗{x} = lim⟨ν⟩∗
fx = fx.

□

Corollary 2169. Let µ and ν be Hausdorff funcoids. Then function f can
be restored from values of xlim⟨µ⟩∗{x} f .



CHAPTER 5

Extending Galois connections between funcoids
and reloids

Definition 2170.
1◦. Φ∗f = λb ∈ B : d

{
x∈A
fx⊑b

}
;

2◦. Φ∗f = λb ∈ A :
d{

x∈B
fx⊒b

}
.

Proposition 2171.
1◦. If f has upper adjoint then Φ∗f is the upper adjoint of f .
2◦. If f has lower adjoint then Φ∗f is the lower adjoint of f .

Proof. By theorem 131. □

Lemma 2172. Φ∗(RLD)out = (FCD).

Proof. (Φ∗(RLD)out)f =
d{

g∈FCD
(RLD)outg⊒f

}
=

dFCD
{

g∈Rel
(RLD)outg⊒f

}
=

dFCD
{

g∈Rel
g⊒f

}
= (FCD)f . □

Lemma 2173. Φ∗(RLD)out ̸= (FCD).

Proof. (Φ∗(RLD)out)f = d

{
g∈FCD

(RLD)outg⊑f

}
(Φ∗(RLD)out)⊥ ≠ ⊥. □

Lemma 2174. Φ∗(FCD) = (RLD)out.

Proof. (Φ∗(FCD))f =
d{

g∈RLD
(FCD)g⊒f

}
=

dRLD
{

g∈Rel
(FCD)g⊒f

}
=

dRLD
{

g∈Rel
g⊒f

}
=

(RLD)outf . □

Lemma 2175. Φ∗(RLD)in = (FCD).

Proof. (Φ∗(RLD)in)f = d

{
g∈FCD

(RLD)ing⊑f

}
= d

{
g∈FCD

g⊑(FCD)f

}
= (FCD)f . □

Theorem 2176. The picture at figure 14 describes values of functions Φ∗
and Φ∗. All nodes of this diagram are distinct.

Proof. Follows from the above lemmas. □

(FCD) (RLD)in

(RLD)out

other

Φ∗

Φ∗

Φ∗

Φ∗

Figure 14
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Question 2177. What is at the node “other”?

Trying to answer this question:

Lemma 2178. (Φ∗(RLD)out)⊥ = ΩFCD.

Proof. We have (RLD)outΩFCD = ⊥. x ̸⊑ ΩFCD ⇒ (RLD)outx ⊒ Cor x ⊐ ⊥.
Thus max

{
x∈FCD

(RLD)outx=⊥

}
= ΩFCD.

So (Φ∗(RLD)out)⊥ = ΩFCD. □

Conjecture 2179. (Φ∗(RLD)out)f = ΩFCD ⊔ (FCD)f .

The above conjecture looks not natural, but I do not see a better alternative
formula.

Question 2180. What happens if we keep applying Φ∗ and Φ∗ to the node
“other”? Will we this way get a finite or infinite set?



CHAPTER 6

Boolean funcoids

1. One-element boolean lattice

Let A be a boolean lattice and B = P0. It’s sole element is ⊥.
f ∈ pFCD(A;B) ⇔ ∀X ∈ A : (⟨f⟩X ̸≍ ⊥ ⇔ ⟨f−1⟩⊥ ̸≍ X) ⇔ ∀X ∈ A : (0 ⇔〈

f−1〉
⊥ ̸≍ X) ⇔ ∀X ∈ A :

〈
f−1〉

⊥ ≍ X ⇔ ∀X ∈ A :
〈
f−1〉

⊥ = ⊥A ⇔
〈
f−1〉

⊥ =
⊥A ⇔

〈
f−1〉

= {(⊥; ⊥A)}.
Thus card pFCD(A; P0) = 1.

2. Two-element boolean lattice

Consider the two-element boolean lattice B = P1.
Let f be a pointfree protofuncoid from A to B (that is (A;B; α; β) where

α ∈ BA, β ∈ AB).
f ∈ pFCD(A;B) ⇔ ∀X ∈ A, Y ∈ B : (⟨f⟩X ̸≍ Y ⇔

〈
f−1〉

Y ̸≍ X) ⇔ ∀X ∈
A, Y ∈ B : ((0 ∈ ⟨f⟩X ∧ 0 ∈ Y ) ∨ (1 ∈ ⟨f⟩X ∧ 1 ∈ Y ) ⇔ ⟨f−1⟩Y ̸≍ X).

T =
{

X∈A
0∈⟨f⟩X

}
is an ideal. Really: That it’s an upper set is obvious. Let

P ∪ Q ∈
{

X∈A
0∈⟨f⟩X

}
. Then 0 ∈ ⟨f⟩(P ∪ Q) = ⟨f⟩P ∪ ⟨f⟩Q; 0 ∈ ⟨f⟩P ∨ 0 ∈ ⟨f⟩Q.

Similarly S =
{

X∈A
1∈⟨f⟩X

}
is an ideal.

Let now T, S ∈ PA be ideals. Can we restore ⟨f⟩? Yes, because we know
0 ∈ ⟨f⟩X and 1 ∈ ⟨f⟩X for every X ∈ A.

So it is equivalent to ∀X ∈ A, Y ∈ B : ((X ∈ T ∧ 0 ∈ Y ) ∨ (X ∈ S ∧ 1 ∈ Y ) ⇔
⟨f−1⟩Y ̸≍ X).

f ∈ pFCD(A;B) is equivalent to conjunction of all rows of this table:
Y equality
∅

〈
f−1〉

∅ = ∅
{0} X ∈ T ⇔

〈
f−1〉

{0} ̸≍ X

{1} X ∈ S ⇔
〈
f−1〉

{1} ̸≍ X
{0,1} X ∈ T ∨ X ∈ S ⇔

〈
f−1〉

{0, 1} ̸≍ X
Simplified:
Y equality
∅

〈
f−1〉

∅ = ∅
{0} T = ∂

〈
f−1〉

{0}
{1} S = ∂

〈
f−1〉

{1}
{0,1} T ∪ S = ∂

〈
f−1〉

{0, 1}
From the last table it follows that T and S are principal ideals.
So we can take arbitrary either

〈
f−1〉

{0}, ⟨f−1⟩{1} or principal ideals T and
S.

In other words, we take
〈
f−1〉

{0}, ⟨f−1⟩{1} arbitrary and independently. So
we have pFCD(A;B) equivalent to product of two instances of A. So it a boolean
lattice. FiXme: I messed product with disjoint union below.)
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3. Finite boolean lattices

We can assume B = PB for a set B, card B = n. Then
f ∈ pFCD(A;B) ⇔ ∀X ∈ A, Y ∈ B : (⟨f⟩X ̸≍ Y ⇔

〈
f−1〉

Y ̸≍ X) ⇔ ∀X ∈
A, Y ∈ B : (∃i ∈ Y : i ∈ ⟨f⟩X ⇔

〈
f−1〉

Y ̸≍ X).
Having values of

〈
f−1〉

{i} we can restore all ⟨f−1⟩Y . [need this paragraph?]
Let Ti =

{
X∈A

i∈⟨f⟩X

}
.

Let now Ti ∈ PA be ideals. Can we restore ⟨f⟩? Yes, because we know
i ∈ ⟨f⟩X for every X ∈ A.

So, it is equivalent to:
∀X ∈ A, Y ∈ B : (∃i ∈ Y : X ∈ Ti ⇔

〈
f−1〉

Y ̸≍ X). (1)

Lemma 2181. The formula (1) is equivalent to:
∀X ∈ A, i ∈ B : (X ∈ Ti ⇔

〈
f−1〉

{i} ̸≍ X). (2)

Proof. (1)⇒(2). Just take Y = {i}.
(2)⇒(1). Let (2) holds. Let also X ∈ A, Y ∈ B. Then ⟨f−1⟩Y ̸≍ X ⇔⋃

i∈Y ⟨f−1⟩{i} ̸≍ X ⇔ ∃i ∈ Y : ⟨f−1⟩{i} ̸≍ X ⇔ ∃i ∈ Y : X ∈ Ti.
□

Further transforming: ∀i ∈ B : Ti = ∂⟨f−1⟩{i}.
So

〈
f−1〉

{i} are arbitary elements of B and Ti are corresponding arbitrary
principal ideals.

In other words, pFCD(A;B) ∼= AΠ . . . ΠA (card B times). Thus pFCD(A;B) is
a boolean lattice.

4. About infinite case

Let A be a complete boolean lattice, B be an atomistic boolean lattice.
f ∈ pFCD(A;B) ⇔ ∀X ∈ A, Y ∈ B : (⟨f⟩X ̸≍ Y ⇔

〈
f−1〉

Y ̸≍ X) ⇔ ∀X ∈
A, Y ∈ B : (∃i ∈ atoms Y : i ∈ atoms⟨f⟩X ⇔

〈
f−1〉

Y ̸≍ X).
Let Ti =

{
X∈A

i∈atoms⟨f⟩X

}
.

Ti is an ideal: Really: That it’s an upper set is obvious. Let P ∪ Q ∈{
X∈A

i∈atoms⟨f⟩X

}
. Then i ∈ atoms⟨f⟩(P ∪Q) = atoms⟨f⟩P ∪atoms⟨f⟩Q; i ∈ ⟨f⟩P ∨i ∈

⟨f⟩Q.
Let now Ti ∈ PA be ideals. Can we restore ⟨f⟩? Yes, because we know

i ∈ atoms⟨f⟩X for every X ∈ A and B is atomistic.
So, it is equivalent to:

∀X ∈ A, Y ∈ B : (∃i ∈ atoms Y : X ∈ Ti ⇔
〈
f−1〉

Y ̸≍ X). (3)

Lemma 2182. The formula (3) is equivalent to:
∀X ∈ A, i ∈ atomsB : (X ∈ Ti ⇔ ⟨f−1⟩i ̸≍ X). (4)

Proof. (3)⇒(4). Let (3) holds. Take Y = i. Then atoms Y = {i} and thus
X ∈ Ti ⇔ ∃i ∈ atoms Y : X ∈ Ti ⇔

〈
f−1〉

Y ̸≍ X ⇔
〈
f−1〉

i ̸≍ X.
(4)⇒(3). Let (2) holds. Let also X ∈ A, Y ∈ B. Then

〈
f−1〉

Y ̸≍ X ⇔
⟨f−1⟩ datoms Y ̸≍ X ⇔ di∈atoms Y

〈
f−1〉

i ̸≍ X ⇔ ∃i ∈ atoms Y :〈
f−1〉

i ̸≍ X ⇔ ∃i ∈ atoms Y : X ∈ Ti.
□

Further equivalently transforming: ∀i ∈ atomsB : Ti = ∂
〈
f−1〉

i.
So

〈
f−1〉

i are arbitary elements of B and Ti are corresponding arbitrary prin-
cipal ideals.
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In other words, pFCD(A;B) ∼=
∏

i∈card atomsB A. Thus pFCD(A;B) is a boolean
lattice.

So finally we have a very weird theorem, which is a partial solution for the
above open problem (The weirdness is in its partiality and asymmetry):

Theorem 2183. If A is a complete boolean lattice and B is an atomistic
boolean lattice (or vice versa), then pFCD(A;B) is a boolean lattice.

[4] proves “THEOREM 4.6. Let A, B be bounded posets. A ⊗ B is a com-
pletely distributive complete Boolean lattice iff A and B are completely distributive
Boolean lattices.” (where A ⊗ B is equivalent to the set of Galois connections be-
tween A and B) and other interesting results.



CHAPTER 7

Interior funcoids

Having a funcoid f let define interior funcoid f◦.
Definition 2184. Let f ∈ FCD(A, B) = pFCD(T A, T B) be a co-complete

funcoid. Then f◦ ∈ pFCD(dual T A, dual T B) is defined by the formula ⟨f◦⟩∗X =
⟨f⟩X.

Proposition 2185. Pointfree funcoid f◦ exists and is unique.

Proof. X 7→ ⟨f⟩X is a component of pointfree funcoid dual T A → dual T B
iff ⟨f⟩ is a component of the corresponding pointfree funcoid T A → T B that is
essentially component of the corresponding funcoid FCD(A, B) what holds for a
unique funcoid. □

It can be also defined for arbitrary funcoids by the formula f◦ = (CoCompl f)◦.
Obvious 2186. f◦ is co-complete.
Theorem 2187. The following values are pairwise equal for a co-complete

funcoid f and X ∈ T Src f :
1◦. ⟨f◦⟩∗

X;
2◦.

{
y∈Dst f

⟨f−1⟩∗{y}⊑X

}
3◦. d

{
Y ∈T Dst f

⟨f−1⟩∗Y ⊑X

}
4◦. d

{
Y∈F Dst f
⟨f−1⟩Y⊑X

}
Proof.

1◦=2◦.
{

y∈Dst f
⟨f−1⟩∗{y}⊑X

}
=

{
x∈Dst f

⟨f−1⟩∗{x}≍X

}
=

{
x∈Dst f

{x}≍⟨f⟩X

}
= ⟨f⟩X = ⟨f◦⟩∗

X.

2◦=3◦. If
〈
f−1〉∗

Y ⊑ X then (by completeness of f−1) Y =
{

y∈Y
⟨f−1⟩∗{y}⊑X

}
and

thus

l

{
Y ∈ T Dst f

⟨f−1⟩∗
Y ⊑ X

}
⊑

{
y ∈ Dst f

⟨f−1⟩∗{y} ⊑ X

}
.

The reverse inequality is obvious.
3◦=4◦. It’s enough to prove that if

〈
f−1〉

Y ⊑ X for Y ∈ F Dst f then exists
Y ∈ up Y such that ⟨f−1⟩∗Y ⊑ X. Really let

〈
f−1〉

Y ⊑ X. Thend
⟨⟨f−1⟩∗⟩∗ up Y ⊑ X and thus exists Y ∈ up Y such that ⟨f−1⟩∗Y ⊑ X

by properties of generalized filter bases.
□

This coincides with the customary definition of interior in topological spaces.
Proposition 2188. f◦◦ = f for every funcoid f .
Proof. ⟨f◦◦⟩∗

X = ¬¬⟨f⟩¬¬X = ⟨f⟩X. □

Proposition 2189. Let g ∈ FCD(A, B), f ∈ FCD(B, C), h ∈ FCD(A, C) for
some sets A. B, C.

g ⊑ f◦ ◦ h ⇔ f−1 ◦ g ⊑ h, provided f and h are co-complete.
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Proof. g ⊑ f◦ ◦ h ⇔ ∀X ∈ A : ⟨g⟩∗
X ⊑ ⟨f◦ ◦ h⟩∗

X ⇔ ∀X ∈ A :
⟨g⟩∗

X ⊑ ⟨f◦⟩∗⟨h⟩∗
X ⇔ ∀X ∈ A : ⟨g⟩∗

X ⊑ ¬⟨f⟩∗¬⟨h⟩∗
X ⇔ ∀X ∈ A : ⟨g⟩∗

X ≍
⟨f⟩∗¬⟨h⟩∗

X ⇔ ∀X ∈ A :
〈
f−1〉∗⟨g⟩∗

X ≍ ¬⟨h⟩∗
X ⇔ ∀X ∈ A :

〈
f−1〉∗⟨g⟩∗

X ⊑
⟨h⟩∗

X ⇔ ∀X ∈ A :
〈
f−1 ◦ g

〉∗
X ⊑ ⟨h⟩∗

X ⇔ f−1 ◦ g ⊑ h. □

Remark 2190. The above theorem allows to get rid of interior funcoids (and
use only “regular” funcoids) in some formulas.



CHAPTER 8

Filterization of pointfree funcoids

Let (A,Z0) and (B,Z1) be primary filtrators over boolean lattices. By corol-
lary 518 we have that A and B are complete lattices.

Let f be a pointfree funcoid Z0 → Z1. Define pointfree funcoid ↑ f (filterization
of f) by the formulas

⟨↑ f⟩X =
Bl

X∈up X
⟨f⟩X and

〈
↑ f−1〉

Y =
Al

Y ∈up Y

〈
f−1〉

Y.

Proposition 2191. ↑ f is a pointfree funcoid.

Proof.

Y ̸≍ ⟨↑ f⟩X ⇔ Y ̸≍
Bl

X∈up X
⟨f⟩X ⇔

Bl

X∈up X
(Y ⊓B ⟨f⟩X) ̸= ⊥ ⇔ (corollary 573*)

∀X ∈ up X : Y ⊓B ⟨f⟩X ̸= ⊥ ⇔ (theorem 537)
∀X ∈ up X , Y ∈ up Y : Y ⊓B ⟨f⟩X ̸= ⊥ ⇔ (corollary 536)

∀X ∈ up X , Y ∈ up Y : Y ⊓Z1 ⟨f⟩X ̸= ⊥ ⇔
∀X ∈ up X , Y ∈ up Y : X [f ] Y.

* To apply corollary 573 we need to show that
{

Y⊓B⟨f⟩X
X∈up X

}
is a generalized

filter base. To show it is enough to show that
{

⟨f⟩X
X∈up X

}
is a generalized filter base.

But this easily follows from proposition 1603 and 579.
Similarly X ̸≍

〈
↑ f−1〉

Y ⇔ ∀X ∈ up X , Y ∈ up Y : X [f ] Y . Thus Y ̸≍
⟨↑ f⟩X ⇔ X ̸≍

〈
↑ f−1〉

Y. □

Proposition 2192. The above defined ↑ is an injection.

Proof. ⟨↑ f⟩X =
dB

X′∈up X⟨f⟩X ′ = minX′∈up X⟨f⟩X ′ = ⟨f⟩X. So ⟨f⟩ is
determined by ⟨↑ f⟩. Likewise

〈
f−1〉

is determined by
〈
↑ f−1〉

. □

Conjecture 2193. (Non generalizing of theorem 1712) Pointfree funcoids f
between some: a. atomistic but non-complete; b. complete but non-atomistic
boolean lattices Z0 and Z1 do not bijectively correspond to morphisms p ∈
Rel(atomsZ0, atomsZ1) by the formulas:

⟨f⟩X = l⟨p⟩∗ atoms X,
〈
f−1〉

Y = l

〈
p−1〉∗ atoms Y ;

(x, y) ∈ GR p ⇔ y ∈ atoms⟨f⟩x ⇔ x ∈ atoms
〈
f−1〉

y.
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CHAPTER 9

Systems of sides

Now we will consider a common generalization of (some of pointfree) funcoids
and (some of) Galois connections. The main purpose of this is general theorem 2241
below.

First consider some properties of Galois connections:

1. More on Galois connections

Here I will denote ⟨f⟩ the lower adjoint of a Galois connection f . FiXme:
Switch to this notation in the book?

Let GAL be the category of Galois connections. FiXme: Need to decide whether
use GAL(A, B) or A ⊗ B.

I will denote (f, g)−1 = (g, f) for a Galois connection (f, g).
We will order Galois connections by the formula

f ⊑ g ⇔ ⟨f⟩ ⊑ ⟨g⟩ ⇔
〈
f−1〉

⊒
〈
g−1〉

.

Obvious 2194. This defines a partial order on the set of Galois connections
between any two (fixed) posets.

Proposition 2195. If f and g are Galois connections (between a join-
semilattice A and a meet-semilattice B), then there exists a Galois connection f ⊔g
determined by the formula ⟨f ⊔ g⟩x = ⟨f⟩x ⊔ ⟨g⟩x.

Proof. It is enough to prove that
(x 7→ ⟨f⟩x ⊔ ⟨g⟩x, y 7→

〈
f−1〉

y ⊓
〈
g−1〉

y)
is a Galois connection that is that

⟨f⟩x ⊔ ⟨g⟩x ⊑ y ⇔ x ⊑
〈
f−1〉

y ⊓
〈
g−1〉

y

for all relevant x and y.
Really,

⟨f⟩x ⊔ ⟨g⟩x ⊑ y ⇔ ⟨f⟩x ⊑ y ∧ ⟨g⟩x ⊑ y ⇔
x ⊑

〈
f−1〉

y ∧ x ⊑
〈
g−1〉

y ⇔ x ⊑
〈
f−1〉

y ⊓
〈
g−1〉

y.

□

FiXme: Describe infinite join of Galois connections.
Proposition 2196. If A is a poset with least element, then ⟨a⟩⊥ = ⊥.
Proof. ⟨a⟩⊥ ⊑ y ⇔ ⊥ ⊑

〈
a−1〉

y ⇔ 1. Thus ⟨a⟩⊥ is the least element. □

Proposition 2197. (A×{⊥B},B×{⊤A}) is the least Galois connection from
a poset A with greatest element to a poset B with least element.

Proof. Let’s prove that it is a Galois connection. We need to prove
(A × {⊥B})x ⊑ y ⇔ x ⊑ (B × {⊤A})y.

But this is trivially equivalent to 1 ⇔ 1. Thus it’s a Galois connection.
That it the least is obvious. □
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Corollary 2198. ⟨⊥⟩x = ⊥ for Galois connections from a poset A with
greatest element to a poset B with least element. FiXme: Clarify.

Theorem 2199. If A and B are bounded posets, then GAL(A,B) is bounded.

Proof. That GAL(A,B) has least element was proved above. I will demon-
strate that (α, β) is the greatest element of pFCD(A,B) for

αX =
{

⊥B if X = ⊥A

⊤B if X ̸= ⊥A
; βY =

{
⊤A if Y = ⊤B

⊥A if Y ̸= ⊤B
.

First prove Y ⊑ αX ⇔ X ⊑ βY .
Really αX ⊑ Y ⇔ X = ⊥A ∨ Y = ⊤B ⇔ X ⊑ βY .
That it is the greatest Galois connection between A and B easily follows from

proposition 2196. □

Theorem 2200. For every brouwerian lattice x 7→ c ⊓ x is a lower adjoint.

Proof. By dual of theorem 154. □

Exercise 2201. Describe the corresponding upper adjoint, especially for the
special case of boolean lattices.

2. Definition

Definition 2202. System of presides is a functor Υ = (f 7→ ⟨f⟩) from an
ordered category to the category of functions between (small) bounded lattices,
such that (for all relevant variables):

1◦. Every Hom-set of Src Υ is a bounded join-semilattice.
2◦. ⟨a⟩⊥ = ⊥.
3◦. ⟨a ⊔ b⟩X = ⟨a⟩X⊔⟨b⟩X (equivalent to Υ to be a join-semilattice homomor-

phism, if we order functions between small bounded lattices component-
wise).

I call morphisms of such categories sides.1

Remark 2203. We could generalize to functions between small join-
semilattices with least elements instead of bounded lattices only, but this is not
really necessary.

Definition 2204. I will call objects of the source category of this functor
simply objects of the presides.

Definition 2205. Bounded system of presides is system of presides from an
ordered category with bounded Hom-sets such that X, Y ∈ Ob Src Υ the following
additional axioms hold for all suitable a:

1◦.
〈
⊥Hom(X,Y )〉a = ⊥.

2◦.
〈
⊤Hom(X,Y )〉a = ⊤ unless a = ⊥

Definition 2206. System of presides with identities is a system of presides
with a morphism ida ∈ Src Υ for every object A of Src Υ and a ∈ A and the
following additional axioms:

1◦. idc ⊑ 1A for every c ∈ A where A is an object of Src Υ.
2◦. ⟨idc⟩ = (λx ∈ A : x ⊓ c) for every c ∈ A where A is an object of Src Υ

Definition 2207. System of sides is a system of presides which is both bounded
and with identities.

1The idea for the name is that we consider one “side” ⟨f⟩ of a funcoid instead of both sides ⟨f⟩
and

〈
f−1

〉
.
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Proposition 2208.
〈
1Src Υ
A

〉
a = a for every system of presides.

Proof. By properties of functors. □

Definition 2209. I call a system of monotone presides a system of presides
with additional axiom:

1◦. ⟨a⟩ is monotone.

Definition 2210. I call a system of distributive presides a system of presides
with additional axiom:

1◦. ⟨a⟩(X ⊔ Y ) = ⟨a⟩X ⊔ ⟨a⟩Y .

Obvious 2211. Every distributive system of presides is monotone.

Proposition 2212. ⟨a ⊓ b⟩X ⊑ ⟨a⟩X ⊓ ⟨b⟩X for monotone systems of sides if
Hom-sets are lattices.

Definition 2213. A system of presides with correct identities is a system of
presides with identities with additional axiom:

1◦. idb ◦ ida = ida⊓b.

Proposition 2214. Every faithful system of presides with identities is with
correct identities.

Proof. ⟨idb ◦ ida⟩x = (⟨idb⟩ ◦ ⟨ida⟩)x = ⟨idb⟩⟨ida⟩x = b ⊓ a ⊓ x = ⟨idb⊓a⟩x.
Thus by faithfulness idb ◦ ida = idb⊓a = ida⊓b. □

Definition 2215. Restricting a side f to an object X is defined by the formula
f |X = f ◦ idX .

Definition 2216. Image of a preside is defined by the formula im f = ⟨f⟩⊤.

Definition 2217. Protofuncoids over a set X of functors is a protofuncoid f
such that ⟨f⟩ ∈ X ∧

〈
f−1〉

∈ X.

3. Concrete examples of sides

Obvious 2218. The category Rel with ⟨f⟩ = ⟨f⟩∗ for f ∈ Rel and usual idc

defines a distributive system of sides with correct identities.

3.1. Some subsides.

Definition 2219. Full subsystem of a system Υ of presides is the functor Υ
restricted to a full subcategory of Src Υ.

Obvious 2220. Full subsystem of a system of presides is always a system of
presides.

Obvious 2221. Full subsystem of a bounded system of presides is always a
bounded subsystem of presides.

Obvious 2222.
1◦. Full subsystem of a system of presides with identities is always with iden-

tities.
2◦. Full subsystem of a system of presides with correct identities is always

with correct identities.

Obvious 2223. Full subsystem of a distributive system of presides is always a
distributive system of presides.

Obvious 2224. Full subsystem of a system of sides is always a system of sides.
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3.2. Funcoids and pointfree funcoids.

Proposition 2225. The category of pointfree funcoids between starrish join-
semilattices with usual ⟨f⟩ defines a system of presides.

Proof. Theorem 1632. □

Proposition 2226. The category of pointfree funcoids between bounded star-
rish join-semilattices with usual ⟨f⟩ defines a system of bounded presides.

Proof. Take the proof of theorem 1629 into account. □

Proposition 2227. The category of pointfree funcoids from a starrish join-
semilattices to a separable starrish join-semilattices defines a distributive system of
presides.

Proof. Theorem 1604. □

Proposition 2228. The category of pointfree funcoids between starrish lat-
tices with usual ⟨f⟩ and usual idc defines a system of presides with correct identities.

Proof. That it is with identities is obvious.
That it is with correct identities is obvious. □

Obvious 2229. The category of pointfree funcoids between bounded starrish
lattices with usual ⟨f⟩ and usual idc defines a system of sides with correct identities.

Proposition 2230. The category of funcoids with usual ⟨f⟩ and usual idc

defines a system of sides with correct identities.
Proof. Because it can be considered a full subsystem of the category of point-

free funcoids between bounded starrish lattices with usual ⟨f⟩. □

3.3. Galois connections.

Proposition 2231. The category of Galois connections between (small) lat-
tices with least elements together with usual ⟨f⟩ defines a distributive system of
presides.

Proof. Propositions 2195 and 2196 for a system of presides.
It is distributive because lower adjoints preserve all joins. □

Proposition 2232. The category of Galois connections between (small)
bounded lattices together with usual ⟨f⟩ defines a bounded system of presides.

Proof. Theorem 2199. □

Proposition 2233. The category of Galois connections between (small) Heyt-
ing lattices together with usual ⟨f⟩ defines a system of sides with correct identities.

Proof. Theorem 2200 ensures that they a system of sides with identities. The
identities are correct due to faithfulness. □

3.4. Reloids.

Proposition 2234. Reloids with the functor f 7→ ⟨(FCD)f⟩ and usual idc form
a system of sides with correct identities.

Proof. It is really a functor because ⟨(FCD)g⟩ ◦ ⟨(FCD)f⟩ =
⟨(FCD)g ◦ (FCD)f⟩ = ⟨(FCD)(g ◦ f)⟩ for every composable reloids f and g.

⟨a⟩⊥ = ⟨(FCD)a⟩⊥ = ⊥;

⟨a ⊔ b⟩X = ⟨(FCD)(a ⊔ b)⟩X = ⟨(FCD)a ⊔ (FCD)b)⟩X =
⟨(FCD)a⟩X ⊔ ⟨(FCD)b⟩X = ⟨a⟩X ⊔ ⟨b⟩X;
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thus it is a system of presides.
That this is a bounded system of presides follows from the formulas

(FCD)⊥RLD(A,B) = ⊥ and (FCD)⊤RLD(A,B) = ⊤.
It is with identities, because proposition 1065. It is with correct identities by

proposition 1025. □

FiXme: Also for pointfree reloids.
FiXme: These examples works for (dagger) systems of sides with binary prod-

uct.

4. Product

Definition 2235. Binary product of objects of presides with identities is de-
fined by the formula X × Y = idY ◦⊤ ◦ idX .

Definition 2236. System of presides with identities is with correct binary
product when f ⊓ (X × Y ) = idY ◦f ◦ idX for every preside f .

Proposition 2237. ⟨A × B⟩X =
{

⊥ if X ≍ A

B if X ̸≍ A

Proof.

⟨A × B⟩X = ⟨idB ◦⊤ ◦ idA⟩X = ⟨idB⟩⟨⊤⟩⟨idA⟩X =

B ⊓ ⟨⊤⟩(X ⊓ A) = B ⊓

{
⊥ if X ≍ A

⊤ if X ̸≍ A
=

{
⊥ if X ≍ A

B if X ̸≍ A

□

Definition 2238. I will call a system of sides with correct meet when

(X0 × Y0) ⊓ (X1 × Y1) = (X0 ⊓ X1) × (Y0 ⊓ Y1).

Proposition 2239. Faithful systems of presides with identities are with correct
meet.

Proof. (X0 × Y0) ⊓ (X1 × Y1) = idY1 ◦(X0 × Y0) ◦ idX1 . Thus

⟨(X0 × Y0) ⊓ (X1 × Y1)⟩P = ⟨idY1⟩⟨X0 × Y0⟩⟨idX1⟩P =

⟨idY1⟩

{
⊥ if X0 ≍ ⟨idX1⟩P
Y0 if X0 ̸≍ ⟨idX1⟩P

=
{

⊥ if X0 ⊓ X1 ≍ P

Y0 ⊓ Y1 if X0 ⊓ X1 ̸≍ P
=

⟨(X0 ⊓ X1) × (Y0 ⊓ Y1)⟩P.

So (X0 × Y0) ⊓ (X1 × Y1) = (X0 ⊓ X1) × (Y0 ⊓ Y1) follows by full faithfulness. □

Proposition 2240. Systems of presides with correct identities are with correct
meet.

Proof. (X0 ×Y0)⊓(X1 ×Y1) = idY1 ◦(X0 ×Y0)◦ idX1 = idY1 ◦(idY0 ◦⊤◦ idX0)◦
idX1 = idY0⊓Y1 ◦⊤ ◦ idX0⊓X1 = (X0 ⊓ X1) × (Y0 ⊓ Y1). □

For some sides holds the formula f ◦ (X × Y ) = X × ⟨f⟩Y . I refrain to give a
name for this property.
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5. Negative results

The following negative result generalizes theorem 3.8 in [3].

Theorem 2241. The element 1(Src Υ)(A,A) is not complemented if A is a non-
atomic boolean lattice, for every monotone system of sides.

Proof. Let T = 1(Src Υ)(A,A).
Let’s suppose T ⊔ V = ⊤ for V ∈ (Src Υ)(A,A) and prove T ⊓ V ̸= ⊥.
Then ⟨T ⊔ V ⟩a = ⊤ for all a ̸= ⊥ and thus ⟨V ⟩a ⊔ a = ⊤.
Consequently ⟨V ⟩a ⊒ ¬a for all a ̸= ⊥.
If a isn’t an atom, then there exists b with 0 ⊏ b ⊏ a and hence ⟨V ⟩a ⊒ ⟨V ⟩b ⊒

¬b ⊐ ¬a; thus ⟨V ⟩a ⊐ ¬a.
There is such c ⊏ ⊤ that a ⊑ c for every atom a. (Really, suppose some element

p ̸= ⊥ has no atoms. Thus all atoms are in ¬p.)
For a ̸⊑ c we have ⟨V ⟩a ⊓ a ⊐ ⊥ for all a ⊑ ¬c thus ⟨T ⊓ V ⟩a ⊒ ⟨V ⟩a ⊓ a ⊐ ⊥.

Thus ⟨(T ⊓ V ) ◦ id¬c⟩a ⊐ ⊥
So T ⊓ V ⊒ (T ⊓ V ) ◦ id¬c ⊐ ⊥. So V is not a complement of T . □

Corollary 2242. (Src Υ)(A,A) is not boolean if A is a non-atomic boolean
lattice.

6. Dagger systems of sides

Proposition 2243.
1◦. For a partially ordered dagger category, each of Hom-set of which has least

element, we have ⊥† = ⊥.
2◦. For a partially ordered dagger category, each of Hom-set of which has

greatest element, we have ⊤† = ⊤.

Proof. ∀f ∈ Hom(A, B) : ⊥† ⊑ f ⇔ ∀f ∈ Hom(A, B) : ⊥ ⊑ f† ⇔ ∀f ∈
Hom(A, B) : ⊥ ⊑ f ⇔ 1. Thus ⊥† is the least.

The other items is dual. □

Definition 2244. Dagger system of presides with identities is system of pre-
sides with identities with category Src Υ being a partially ordered dagger category
and (idX)† = idX for every X.

Proposition 2245. For a system of sides we have (X × Y )† = Y × X.

Proof. (X × Y )† = (idY ◦⊤ ◦ idX)† = id†
X ◦⊤† ◦ id†

Y = idX ◦⊤ ◦ idY = Y ×
X. □

FiXme: Which properties of pointfree funcoids can be generalized for sides?



CHAPTER 10

Backward Funcoids

This is a preliminary partial draft.
Fix a family A of posets.

Definition 2246. Let f be a staroid of filters F(Ai) on boolean lattices Ai.
Backward funcoid for the argument k ∈ domA of f is the funcoid Back(f, k) defined
by the formula (for every X ∈ Ak)

⟨Back(f, k)⟩X =
{

L ∈
∏

i∈dom A F(Ai)
X ∈ ⟨f⟩kL

}
.

Proposition 2247. Backward funcoid is properly defined.

Proof. ⟨Back(f, k)⟩∗(X ⊔ Y ) =
{

L∈
∏

A

X⊔Y ∈⟨f⟩kL

}
=

{
L∈

∏
A

X∈⟨f⟩kL∨Y ∈⟨f⟩kL

}
={

L∈
∏

A

X∈⟨f⟩kL

}
∪

{
L∈

∏
A

Y ∈⟨f⟩kL

}
= ⟨Back(f, k)⟩∗X ∪ ⟨Back(f, k)⟩∗Y . □

Obvious 2248. Backward funcoid is co-complete.

Proposition 2249. If f is a principal staroid then Back(f, k) is a complete
funcoid.

Proof. ?? □

Proposition 2250. f can be restored from Back(f, k) (for every fixed k).

Proof. ?? □

Proposition 2251. f 7→ Back(f, k) is an order isomorphism StrdA →
FCD

(
Ak, Strd(dom A)\{k}

)
.

Proof. ?? □
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CHAPTER 11

Quasi-atoms

Definition 2252. Quasi-atoms funcoid A is the funcoid A → atomsA A de-
fined by the formula ⟨A ⟩∗

X = atomsA X.

This really defines a funcoid because atomsA ⊥ = ∅ and atomsA(X ∪ Y ) =
atomsA X ∪ atomsA Y .

Obvious 2253. A is a co-complete funcoid.

Proposition 2254.
〈
A −1〉∗

Y = dY .

Proof. Y ̸≍ ⟨A ⟩∗
X ⇔ Y ̸≍ atomsA X ⇔ ∃x ∈ atomsA X, y ∈ Y : x ̸≍ y ⇔

∃y ∈ Y : X ̸≍ y ⇔ (because X is a principal filter) ⇔ X ̸≍ dY . □

Note ⟨A ⟩∗X =
dF

X∈up X atomsA X;〈
A −1〉∗Y =

dF
Y ∈up Y dY (Y is filter on the set of ultrafilters).

Can atomsA X be restored knowing ⟨A ⟩X ? Can dY be restored knowing〈
A −1〉

X ?

Proposition 2255. (Provided that A is infinite) A is not complete.

Proof. Take a nonprincipal ultrafilter x. Then
〈
A −1〉∗{x} = d{x} = x is a

nonprincipal filter. □

Conjecture 2256. There is such filter X that ⟨A ⟩∗X is non-principal.

Does quasi-atoms funcoid define a more elegant replacement of atomsA? Does
this concept have any use?
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CHAPTER 12

Cauchy Filters on Reloids

In this chapter I consider low filters on reloids, generalizing Cauchy filters on
uniform spaces. Using low filters, I define Cauchy-complete reloids, generalizing
complete uniform spaces.

FiXme: I forgot to note that Cauchy spaces induce topological (or convergence)
spaces.

1. Preface

Replace \langle ...\rangle with \supfun{...} in LATEX.
This is a preliminary partial draft.
To understand this article you need first look into my book [2].
http://math.stackexchange.com/questions/401989/

what-are-interesting-properties-of-totally-bounded-uniform-spaces
http://ncatlab.org/nlab/show/proximity+space#uniform_spaces for a proof

sketch that proximities correspond to totally bounded uniformities.

2. Low spaces

FiXme: Analyze http://link.springer.com/article/10.1007/s10474-011-0136-9
(“A note on Cauchy spaces”), http://link.springer.com/article/10.1007/
BF00873992 (“Filter spaces”). It also contains references to some useful re-
sults, including (“On continuity structures and spaces of mappings” freely
available at https://eudml.org/doc/16128) that the category FIL of filter spaces is
isomorphic to the category of filter merotopic spaces (copy its definition).

Definition 2257. A lower set1 of filters on U (a set) is a set C of filters on
U , such that if G ⊑ F and F ∈ C then G ∈ C .

Remark 2258. Note that we are particularly interested in nonempty (= con-
taining the improper filter) lower sets of filters. This does not match the traditional
theory of Cauchy spaces (see below) which are traditionally defined as not contain-
ing empty set. Allowing them to contain empty set has some advantages:

• Meet of any lower filters is a lower filter.
• Some formulas become a little simpler.

Definition 2259. I call low space a set together with a nonempty lower set of
filters on this set. Elements of a (given) low space are called Cauchy filters.

Definition 2260. GR(U, C ) = C ; Ob(U, C ) = U . GR(U, C ) is read as graph
of space (U, C ). I denote Low(U) the set of graphs of low spaces on the set U .
Similarly I will denote its subsets ASJ(U), CASJ(U), Cau(U), CCau(U) (see
below).

FiXme: Should use “space structure” instead of “graph of space”, to match
customary terminology.

1Remember that our orders on filters is the reverse to set theoretic inclusion. It could be
called an upper set in other sources.
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Definition 2261. Introduce an order on graphs of low spaces and on low
spaces: C ⊑ D ⇔ C ⊆ D and (U, C ) ⊑ (U, D) ⇔ C ⊑ D .

Obvious 2262. Every set of low spaces on some set is partially ordered.

3. Almost sub-join-semilattices

Definition 2263. For a join-semilattice A, a almost sub-join-semilattice is such
a set S ∈ PA, that if F , G ∈ S and F ̸≍ G then F ⊔ G ∈ S.

Definition 2264. For a complete lattice A, a completely almost sub-join-
semilattice is such a set S ∈ PA, that if

d
T ̸= ⊥F(X) then dT ∈ S for every

T ∈ PS.

Obvious 2265. Every completely almost sub-join-semilattice is a almost sub-
join-semilattice.

4. Cauchy spaces

Definition 2266. A reflexive low space is a low space (U, C ) such that ∀x ∈
U :↑U {x} ∈ C .

Definition 2267. The identity low space 1Low(U) on a set U is the low space
with graph

{
↑U {x}
x∈U

}
.

Obvious 2268. A low space f is reflexive iff f ⊒ 1Low(Ob f).

Definition 2269. An almost sub-join space is a low space whose graph is an
almost sub-join-semilattice. I will denote such spaces as ASJ.

Definition 2270. A completely almost sub-join space is a low space whose
graph is a completely almost sub-join-semilattice. I will denote such spaces as
CASJ.

Definition 2271. A precauchy space (aka filter space) is a reflexive low space.
I will denote such spaces as preCau.

Definition 2272. A Cauchy space is a precauchy space which is also an almost
sub-join space. I will denote such spaces as Cau.

Definition 2273. A completely Cauchy space is a precauchy space which is
also a completely almost sub-join space. I will denote such spaces as CCau.

Obvious 2274. Every completely Cauchy space is a Cauchy space.

Proposition 2275. a ⊔{ X ∈C
X ⊒F } b = a ⊔ b for a, b ∈

{
X ∈C
X ⊒F

}
, provided that F is

a proper fixed Cauchy filter on an almost sub-join space.

Proof. F is proper. So we have a ⊓ b ⊒ F ≠ ⊥F(X). Thus a ⊔ b is a Cauchy
filter and so a ⊔ b ∈

{
X ∈C
X ⊒F

}
. □

Proposition 2276. d

{ X ∈C
X ⊒F } S = dS for nonempty S ∈ P

{
X ∈C
X ⊒F

}
, provided

that F is a proper fixed Cauchy filter on a completely almost sub-join space.

Proof. F is proper. So for every nonempty S ∈ P
{

X ∈C
X ⊒F

}
we have

d
S ⊒

F ̸= ⊥F(X). Thus dS is a Cauchy filter and so dS ∈
{

X ∈C
X ⊒F

}
. □

Corollary 2277. Every proper Cauchy filter is contained in a unique maximal
Cauchy filter (for completely almost sub-join spaces).
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Proof. Let F be a proper Cauchy filter. Then d

{ X ∈C
X ⊒F }{

X ∈C
X ⊒F

}
(existing by

the above proposition) is the maximal Cauchy filter containing F .
Suppose another maximal Cauchy filter T contains F . Then T ∈

{
X ∈C
X ⊒F

}
and

thus T = d

{ X ∈C
X ⊒F }{

X ∈C
X ⊒F

}
. □

5. Relationships with symmetric reloids

FiXme: Also consider relationships with funcoids.

Definition 2278. Denote (RLD)Low(U, C ) = d

{
X ×RLDX

X ∈C

}
.

Definition 2279. (Low)ν (low space for endoreloid ν) is a low space on U
such that

GR(Low)ν =
{

X ∈ F (U)
X ×RLD X ⊑ ν

}
.

Theorem 2280. If (U, C ) is a low space, then (U, C ) = (Low)(RLD)Low(U, C ).

Proof. If X ∈ C then X ×RLD X ⊑ (RLD)Low(U, C ) and thus X ∈
GR(Low)(RLD)Low(U, C ). Thus (U, C ) ⊑ (Low)(RLD)Low(U, C ).

Let’s prove (U, C ) ⊒ (Low)(RLD)Low(U, C ).
Let A ∈ GR(Low)(RLD)Low(U, C ). We need to prove A ∈ C .
Really A ×RLD A ⊑ (RLD)Low(U, C ). It is enough to prove that ∃X ∈ C : A ⊑

X .
Suppose ∄X ∈ C : A ⊑ X .
For every X ∈ C obtain XX ∈ X such that XX /∈ A (if forall X ∈ X we have

XX ∈ A, then X ⊒ A what is contrary to our supposition).
It is now enough to prove A ×RLD A ̸⊑ d

{
↑U XX ×RLD↑U XX

X ∈C

}
.

Really, d

{
↑U XX ×RLD↑U XX

X ∈C

}
=↑RLD(U,U) ⋃{

↑U XX ×RLD↑U XX
X ∈C

}
. So our claim

takes the form
⋃{

↑U XX ×RLD↑U XX
X ∈C

}
/∈ GR(A ×RLD A) that is ∀A ∈ A :⋃{

↑U XX ×RLD↑U XX
X ∈C

}
⊉ A × A what is true because XX ⊉ A for every A ∈ A. □

Remark 2281. The last theorem does not hold with X ×FCD X instead of
X ×RLD X (take C =

{
{x}
x∈U

}
for an infinite set U as a counter-example).

Remark 2282. Not every symmetric reloid is in the form (RLD)Low(U, C )
for some Cauchy space (U, C ). The same Cauchy space can be induced by
different uniform spaces. See http://math.stackexchange.com/questions/702182/
different-uniform-spaces-having-the-same-set-of-cauchy-filters

Proposition 2283.
1◦. (Low)f is reflexive iff endoreloid f is reflexive.
2◦. (RLD)Lowf is reflexive iff low space f is reflexive.

Proof.
1◦. f is reflexive ⇔ 1RLD ⊑ f ⇔ ∀x ∈ Ob f :↑ ({x}×{x}) ⊑ f ⇔ ∀x ∈ Ob f :↑

{x}×RLD ↑ {x} ⊑ f ⇔ ∀x ∈ Ob f :↑ {x} ∈ (Low)f ⇔ (Low)f is reflexive.
2◦. Let f is reflexive. Then ∀x ∈ Ob f :↑ {x} ∈ f ; ∀x ∈ Ob f :↑ {x}×RLD ↑

{x} ⊑ (RLD)Lowf ; ∀x ∈ Ob f :↑ ({x} × {x}) ⊑ (RLD)Lowf ; 1RLD ⊑ (RLD)Lowf .
Let now (RLD)Lowf be reflexive. Then f = (Low)(RLD)Lowf is reflexive.

□

http://math.stackexchange.com/questions/702182/different-uniform-spaces-having-the-same-set-of-cauchy-filters
http://math.stackexchange.com/questions/702182/different-uniform-spaces-having-the-same-set-of-cauchy-filters
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Definition 2284. A transitive low space is such low space f that (RLD)Lowf ◦
(RLD)Lowf = (RLD)Lowf .

Remark 2285. The composition (RLD)Lowf ◦ (RLD)Lowf may be inequal to
(RLD)Lowµ for all low spaces µ (exercise!). Thus usefulness of the concept of tran-
sitive low spaces is questionable.

Remark 2286. Every low space is “symmetric” in the sense that it corresponds
to a symmetric reloid.

Theorem 2287. (Low) is the upper adjoint of (RLD)Low.

Proof. We will prove (Low)(RLD)Lowf ⊒ f and (RLD)Low(Low)g ⊑ g (that
(Low) and (RLD)Low are monotone is obvious).

Really:

GR(Low)(RLD)Lowf = GR(Low) l

{
X ×RLD X
X ∈ GR f

}
= Y ∈ F Ob(f)

Y ×RLD Y ⊑ d

{
X ×RLDX
X ∈GR f

}
 ⊇

{
Y ∈ F Ob(f)

Y ∈ GR f

}
= GR f ;

(RLD)Low(Low)g = d

{
X ×RLDX

X ∈GR(Low)g

}
= d

{
X ×RLDX

X ∈F(Ob g),X ×RLDX ⊑g

}
⊑ g. □

Corollary 2288.
1◦. (RLD)Low dS = d⟨(RLD)Low⟩∗S;
2◦. (Low)

d
S =

d
⟨(Low)⟩∗S.

Below it’s proved that (Low) and (RLD)Low can be restricted to completely
almost sub-join spaces and symmetrically transitive reloids. Thus they preserve
joins of (completely) almost sub-join spaces and meets of symmetrically transitive
reloids. FiXme: Check. FiXme: Move it to be below the definition.

6. Lattices of low spaces

Proposition 2289. µ ⊑ ν ⇔ ∀X ∈ GR µ∃Y ∈ GR ν : X ⊑ Y for low filter
spaces (on the same set U).

Proof.
⇒. µ ⊑ ν ⇔ GR µ ⊆ GR ν ⇒ ∀X ∈ GR µ∃Y ∈ GR ν : X = Y ⇒ ∀X ∈ GR µ∃Y ∈

GR ν : X ⊑ Y.
⇐. Let ∀X ∈ GR µ∃Y ∈ GR ν : X ⊑ Y. Take X ∈ GR µ. Then ∃Y ∈ GR ν : X ⊑

Y. Thus X ∈ GR ν. So GR µ ⊆ GR ν that is µ ⊑ ν.
□

Obvious 2290.
1◦. (RLD)Low is an order embedding.
2◦. (Low) is an order homomorphism.

I will denote d,
d

, ⊔, ⊓ the lattice operations on low spaces or graphs of low
spaces.

Proposition 2291. dS =
⋃

S for every set S of graphs of low spaces on some
set.

Proof. It’s enough to prove that there is a low space µ such that GR µ =
⋃

S.
In other words, it’s enough to prove that

⋃
S is a nonempty lower set, but that’s

obvious. FiXme: A little more detailed proof. □
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Proposition 2292.
d

S =
{ d

im P

P ∈
∏

X∈S
X

}
for every set S of graphs of low

spaces on some set.

Proof. First prove that there is such low space µ that µ =
{ d

im P

P ∈
∏

X∈S
X

}
. In

other words, we need to prove that
{ d

im P

P ∈
∏

X∈S
X

}
is a nonempty lower set. That it

is nonempty is obvious. Let filter G ⊑ F and F ∈
{ d

im P

P ∈
∏

X∈S
X

}
. Then F =

d
im P

for a P ∈
∏

X∈S X that is P (X) ∈ X for every X ∈ S. Take P ′ = (G⊓) ◦ P . Then
P ′ ∈

∏
X∈S X because P ′(X) ∈ X for every X ∈ S and thus obviously G =

d
im P ′

and thus G ∈
{ d

im P

P ∈
∏

X∈S
X

}
. So such µ exists.

It remains to prove that µ is the greatest lower bound of S.
µ is a lower bound of S. Really, let X ∈ S and Y ∈ X. Then exists P ∈∏

X∈S X such that P (X) = Y (taken into account that every X is nonempty) and
thus im P ∋ Y and so

d
im P ⊑ Y , that is (proposition 2289) µ ⊑ X.

Let ν be a lower bound of S. It remains to prove that µ ⊒ ν, that is ∀Q ∈ ν :
Q =

d
im P for some P ∈

∏
X∈S X. Take P = (λX ∈ S : Q). This P ∈

∏
X∈S X

because Q ∈ X for every X ∈ S. □

Corollary 2293. f ⊓ g =
{

F ⊓G
F ∈f,G∈g

}
for every graphs f and g of low spaces

(on some set).

6.1. Its subsets.

Proposition 2294. The set of sub-join low spaces (on some fixed set) is meet-
closed in the lattice of low spaces on a set.

Proof. Let f , g be graphs of almost sub-join spaces (on some fixed set),
f ⊓ g =

{
F ⊓G

F ∈f,G∈g

}
.

If A, B ∈ f ⊓ g and A ̸≍ B, then A, B ∈ f and A, B ∈ g. Thus A ⊔ B ∈ f and
A ⊔ B ∈ g and so A ⊔ B ∈ f ⊓ g. □

Corollary 2295. The set of Cauchy spaces (on some fixed set), is meet-closed
in the lattice of low spaces on a set.

Proposition 2296. The set of completely almost sub-join spaces is meet-closed
in the lattice of low spaces on a set.

Proof. Let S be a set of graphs of almost completely sub-join low spaces (on

some fixed set).
d

S =
{ d

im P

P ∈
∏

X∈S
X

}
.

If A, B ∈
d

S and A ̸≍ B, then A, B ∈ X for every X ∈ S. Thus A ⊔ B ∈ X
and so A ⊔ B ∈

d
S. □

Corollary 2297. The set of completely Cauchy spaces is meet-closed in the
lattice of low spaces on a set.

From the above it follows:

Obvious 2298. The following sets are complete lattices in our order:
1◦. almost sub-join spaces, whose graphs are almost sub-join-semilattices;
2◦. completely almost sub-join spaces;
3◦. reflexive low spaces;
4◦. precauchy spaces;
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5◦. Cauchy spaces;
6◦. completely Cauchy spaces.

Denote Z(f) =
{

F ⊔G
F ∈f,G∈f,F ̸≍G

}
∪ {⊥} for every set f of filters (on some fixed

set).

Proposition 2299. Z(f) ⊒ f for every set f of filters.

Proof. Consider for F ∈ f both cases F = ⊥ and F ̸= ⊥. □

Lemma 2300. For graphs of low spaces f , g (on the same set)

Q =
⋃

S ∪ Z
(⋃

S
)

∪ Z
(

Z
(⋃

S
))

∪ . . .

is a graph of some almost sub-join space.

Proof. That it is nonempty and a lower set of filters is obvious. It remains
to prove that it is an almost sub-join-semilattice.

Let A, B ∈ Q and A ̸≍ B. Then

A, B ∈ Z . . . Z︸ ︷︷ ︸
n times

(⋃
S

)
for a natural n. Thus

A ⊔ B ∈ Z . . . Z︸ ︷︷ ︸
n+1 times

(⋃
S

)
and so A ⊔ B ∈ Q. □

Proposition 2301. Join on the lattice of graphs of almost sub-join spaces is
described by the formula

ASJ

lS =
⋃

S ∪ Z
(⋃

S
)

∪ Z
(

Z
(⋃

S
))

∪ . . .

Proof. The right part of the above formula µ is a graph of an almost sub-join
space (lemma).

That µ is an upper bound of S is obvious.
It remains to prove that µ is the least upper bound.
Suppose ν is an upper bound of S. Then ν ⊇

⋃
S. Thus, because ν is an

almost sub-join-semilattice, Z(ν) ⊆ ν, likewise Z(Z(ν)) ⊆ ν, etc. Consequently
Z(

⋃
S) ⊆ ν, Z(Z(

⋃
S)) ⊆ ν, etc. So we have µ ⊑ ν. □

Proposition 2302. FiXme: Should be merged with the previous proposition.
ASJ

lS =
{

F0 ⊔ · · · ⊔ Fn−1

F0, . . . , Fn−1 ∈
⋃

S, F0 ̸≍ F1 ∧ F1 ̸≍ F2 ∧ · · · ∧ Fn−2 ̸≍ Fn−1 for n ∈ N

}
.

Remark 2303. We take F0 ⊔ · · · ⊔ Fn−1 = ⊥ for n = 0.

Proof. Denote the right part of the above formula as R.
Suppose F ∈ R. Let’s prove by induction that F ∈ Q. If F = ⊥ that’s obvious.

Suppose we know that F0 ⊔ · · · ⊔ Fn−1 ∈ Q that is for a natural m

F0 ⊔ · · · ⊔ Fn−1 ∈ Z . . . Z︸ ︷︷ ︸
m times

(⋃
S

)
for F0, . . . , Fn−1 ∈

⋃
S, F0 ̸≍ F1 ∧F1 ̸≍ F2 ∧· · ·∧Fn−2 ̸≍ Fn−1 and also Fn−1 ̸≍ Fn.

Then F0 ⊔ · · · ⊔ Fn−1 ̸≍ Fn and thus F0 ⊔ · · · ⊔ Fn−1 ⊔ Fn ∈ Z . . . Z︸ ︷︷ ︸
m+1 times

(
⋃

S) that is

F0 ⊔ · · · ⊔ Fn−1 ⊔ Fn ∈ Q. So F ∈ Q for every F ∈ R.
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Now suppose F ∈ Q that is for a natural m

F ∈ Z . . . Z︸ ︷︷ ︸
m times

(⋃
S

)
.

Let’s prove by induction that F = F0 ⊔ · · · ⊔ Fn−1 for some F0, . . . , Fn−1 ∈
⋃

S
such that F0 ̸≍ F1 ∧ F1 ̸≍ F2 ∧ · · · ∧ Fn−2 ̸≍ Fn−1. If m = 0 then F ∈

⋃
S and our

promise is obvious. Let our statement holds for a natural m. Prove that it holds
for

F ′ ∈ Z . . . Z︸ ︷︷ ︸
m+1 times

(⋃
S

)
.

We have F ′ = Z(F ) for some F = F0 ⊔ · · · ⊔ Fn−1 where F0 ̸≍ F1 ∧ F1 ̸≍ F2 ∧
· · · ∧ Fn−2 ̸≍ Fn−1. The case F ′ = ⊥ is easy. So we can assume F ′ = A ⊔ B
where A, B ∈ F and A ̸≍ B. By the statement of induction A = A0 ⊔ · · · ⊔ Ap−1,
B = B0 ⊔ · · · ⊔ Bq−1 for natural p and q, where A0 ̸≍ A1 ∧ A1 ̸≍ A2 ∧ · · · ∧ Ap−2 ̸≍
Ap−1, B0 ̸≍ B1 ∧ B1 ̸≍ B2 ∧ · · · ∧ Bn−2 ̸≍ Bn−1. Take j such that A ̸≍ Bj and
then take i such that Ai ̸≍ Bj . Then (using symmetry of the relation ̸≍) we have
(A0 ̸≍ A1 ∧ A1 ̸≍ A2 ∧ · · · ∧ Ap−2 ̸≍ Ap−1) ∧ (Ap−1 ̸≍ Ap−2 ̸≍ . . . Ai+1 ̸≍ Ai) ∧ Ai ̸≍
Bj ∧ (Bj ̸≍ Bj−1 ∧ · · · ∧ B1 ̸≍ B0) ∧ (B0 ̸≍ B1 ∧ B1 ̸≍ B2 ∧ · · · ∧ Bq−2 ̸≍ Bq−1).
So F ′ = A ⊔ B is representable as the join of a finite sequence of filters with each
adjacent pair of filters in this sequence being intersecting. That is F ′ ∈ Q. □

Proposition 2304. The lattice of Cauchy spaces (on some set) is a complete
sublattice of the lattice of almost sub-join spaces.

Proof. It’s obvious, taking into account obvious 2268. □

Denote Z∞(f) =
{

dT
T ∈Pf∧

d
T ̸=⊥

}
∪ {⊥}.

Proposition 2305. Z∞(f) ⊒ f .

Proof. Consider for F ∈ f both cases F = ⊥ and F ̸= ⊥. □

Lemma 2306. If S is a set of graphs of low spaces, then

Q =
⋃

S ∪ Z∞

(⋃
S

)
∪ Z∞

(
Z∞

(⋃
S

))
∪ . . .

is a graph of a completely Cauchy space.

Proof. That it is nonempty and a lower set of filters is obvious. It remains
to prove that it is a completely almost sub-join-semilattice.

Let T ∈ PQ and
d

T ̸= ⊥. Then

T ∈ P Z∞ . . . Z∞︸ ︷︷ ︸
n times

(⋃
S

)
for a natural n. Thus

T ∈ P Z∞ . . . Z∞︸ ︷︷ ︸
n+1 times

(⋃
S

)
and so dT ∈ Q. □

Proposition 2307. The lattice of completely Cauchy spaces (on some set) is
a complete sublattice of the lattice of completely almost sub-join spaces.

Proof. It’s obvious, taking into account obvious 2268. □

Proposition 2308. Join of a set S on the lattice of graphs of completely almost
sub-join-semilattice is described by the formula:

CASJ

lS =
⋃

S ∪ Z∞

(⋃
S

)
∪ Z∞

(
Z∞

(⋃
S

))
∪ . . .
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Proof. The right part of the above formula µ is a graph of an almost sub-join
space (lemma).

That µ is an upper bound of S is obvious.
It remains to prove that µ is the least upper bound.
Suppose ν is an upper bound of S. Then ν ⊇

⋃
S. Thus, because ν is an almost

sub-join-semilattice, Z∞(ν) ⊆ ν, likewise Z∞(Z∞(ν)) ⊆ ν, etc. Consequently
Z∞(

⋃
S) ⊆ ν, Z∞(Z∞(

⋃
S)) ⊆ ν, etc. So we have µ ⊑ ν. □

Conjecture 2309.

1◦. d

CASJ
S =



dT0⊔···⊔ dTn−1

n ∈ N, T0, . . . , Tn−1 ∈
⋃

S,
l

T0 ̸= ⊥ ∧ · · · ∧
l

Tn−1 ̸= ⊥,

lT0 ̸≍ lT1 ∧ · · · ∧ lTn−2 ̸≍ lTn−1.


;

2◦. d

CASJ
S =



dT0⊔ dT1⊔...

T0, T1, · · · ∈
⋃

S,
l

T0 ̸= ⊥ ∧
l

T2 ̸= ⊥ ∧ . . . , lT0 ̸≍ lT1 ∧ lT1 ̸≍ lT2 ∧ . . .


.

7. Up-complete low spaces

Definition 2310. Ideal base is a nonempty subset S of a poset such that
∀a, b ∈ S∃c ∈ S : (a, b ⊑ c).

Obvious 2311. Ideal base is dual of filter base.

Theorem 2312. Product of nonempty posets is a ideal base iff every factor is
an ideal base.

Proof. FiXme: more detailed proof
In one direction it is easy: Suppose one multiplier is not a dcpo. Take a chain

with fixed elements (thanks our posets are nonempty) from other multipliers and
for this multiplier take the values which form a chain without the join. This proves
that the product is not a dcpo.

Let now every factor is dcpo. S is a filter base in
∏

A iff each component
is a filter base. Each component has a join. Thus by proposition 641 S has a
componentwise join. □

Definition 2313. I call a low space up-complete when each ideal base (or
equivalently every nonempty chain, see theorem 589) in this space has join in this
space.

Remark 2314. Elements of this ideal base are filters. (Thus is could be called
a generalized ideal base.)

Example 2315.
1◦.

{
X ∈F]0;+∞[

∃ε>0:X ⊑↑]ε;+∞[

}
∪ ↑ {0} is a graph of Cauchy space on R+, but not

up-complete.
2◦. F[0; +∞[ is a strictly greater graph of Cauchy space on R+ and is up-

complete.
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Lemma 2316. Let f be a reloid. Each ideal base T ⊆
{

(A,B)
A×RLDB⊑f

}
has a join

in this set.

Proof. Let T be an ideal base and ∀(A, B) ∈ T : A ×FCD B ⊑ f .
∀(A, B) ∈ T∀X ∈ F Src f : (X ̸≍ A ⇒ B ⊑ ⟨f⟩X );
taking join we have:
∀A ∈ Pr0 T∀X ∈ F Src f :

(
X ̸≍ A ⇒ dB∈Pr1 T B ⊑ ⟨f⟩X

)
;

∀A ∈ Pr0 T : A ×FCD dB∈Pr1 T B ⊑ f .
Now repeat a similar operation second time:
∀A ∈ Pr0 T : dB∈Pr1 T B ×FCD A ⊑ f−1;
∀A ∈ Pr0 T∀Y ∈ F Dst f :

(
Y ̸≍ dB∈Pr1 T B ⇒ A ⊑ ⟨f−1⟩Y

)
;

∀Y ∈ F Dst f :
(
Y ̸≍ dB∈Pr1 T B ⇒ dA∈Pr0 T A ⊑ ⟨f−1⟩Y

)
;

dB∈Pr1 T B ×FCD dA∈Pr0 T A ⊑ f−1;

dA∈Pr0 T A ×FCD dB∈Pr1 T B ⊑ f . But dA∈Pr0 T A ×FCD dB∈Pr1 T B is the join
in consideration, because ideal base is ideal base in each argument. □

Proposition 2317. A Cauchy space generated by an endoreloid is always up-
complete.

Proof. Let f be an endoreloid. GR(Low)f =
{

X ∈Ob f
X ×RLDX ⊑f

}
.

Let T ⊆
{

X ∈Ob f
X ×RLDX ⊑f

}
be an ideal base.

Then N =
{

(F,F)
F∈T

}
is also an ideal base. Obviously N ⊆

{
(A,B)

A×RLDB⊑f

}
. Thus

by the lemma it has a join in
{

(A,B)
A×RLDB⊑f

}
. It’s easy to see that this join is in{

(A,A)
A∈Ob f,A×RLDA⊑f

}
. Consequently T has a join in

{
X ∈Ob f

X ×RLDX ⊑f

}
. □

It is long time known that (using our terminology) low space induced by a
uniform space is a Cauchy space, but that it is complete and up-complete is probably
first discovered by Victor Porton.

8. More on Cauchy filters

Obvious 2318. Low filter on an endoreloid ν is a filter F such that
∀U ∈ GR f∃A ∈ F : A × A ⊆ U.

Remark 2319. The above formula is the standard definition of Cauchy filters
on uniform spaces.

Proposition 2320. If ν ⊒ ν ◦ ν−1 then every neighborhood filter is a Cauchy
filter, that it

ν ⊒ ⟨(FCD)ν⟩∗{x} ×RLD ⟨(FCD)ν⟩∗{x}
for every point x.

Proof. ⟨(FCD)ν⟩∗{x} ×RLD ⟨(FCD)ν⟩∗{x} = ⟨(FCD)ν⟩ ↑Ob ν {x} ×RLD

⟨(FCD)ν⟩ ↑Ob ν {x} = ν ◦ (↑Ob ν {x}×RLD ↑Ob ν {x}) ◦ ν−1 = ν ◦ (↑RLD(Ob ν,Ob ν)

{(x, x)}) ◦ ν−1 ⊑ ν ◦ idRLD(Ob ν,Ob ν) ◦ν−1 = ν ◦ ν−1 ⊑ ν. □

Proposition 2321. If ν ⊒ ν ◦ ν−1 a filter converges (in ν) to a point, it is a
low filter, provided that every neighborhood filter is a low filter.

Proof. Let F ⊑ ⟨(FCD)ν⟩∗{x}. Then F ×RLD F ⊑ ⟨(FCD)ν⟩∗{x} ×RLD

⟨(FCD)ν⟩∗{x} ⊑ ν. □

Corollary 2322. If a filter converges to a point, it is a low filter, provided
that ν ⊒ ν ◦ ν−1.
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9. Maximal Cauchy filters

Lemma 2323. Let S be a set of sets with
d〈

↑F
〉∗

S ̸= 0F (in other words, S

has finite intersection property). Let T =
{

X×X
X∈S

}
. Then⋃

T ◦
⋃

T =
⋃

S ×
⋃

S.

Proof. Let x ∈
⋃

S. Then x ∈ X for some X ∈ S. ⟨
⋃

T ⟩{x} ⊒↑ X ⊇
⋂

S ̸=
∅. Thus

⟨
⋃

T ◦
⋃

T ⟩{x} = ⟨
⋃

T ⟩⟨
⋃

T ⟩{x} ∈
〈
↑FCD ⋃

T
〉 d

⟨↑F⟩S ⊒

d

{
⟨↑FCD(X×X)⟩

d
⟨↑F⟩S

X∈S

}
= d

{
↑FX
X∈S

}
= d⟨↑F⟩S that is ⟨

⋃
T ◦

⋃
T ⟩{x} ⊇

⋃
S. □

Corollary 2324. Let S be a set of filters (on some fixed set) with nonempty
meet. Let

T =
{

X ×RLD X
X ∈ S

}
Then

lT ◦ lT = lS ×RLD

lS.

Proof. dT ◦ dT =
d{

↑F(X◦X)
X∈ dT

}
.

If X ∈ dT then X =
⋃

Q∈T (PQ ×PQ) where PQ ∈ Q. Therefore by the lemma
we have ⋃{

PQ × PQ

Q ∈ T

}
◦

⋃{
PQ × PQ

Q ∈ T

}
=

⋃
Q∈T

PQ ×
⋃

Q∈T

PQ.

Thus X ◦ X =
⋃

Q∈T PQ ×
⋃

Q∈T PQ.

Consequently dT ◦ dT =
d

{
↑F

(⋃
Q∈T

PQ×
⋃

Q∈T
PQ

)
X∈ dT

}
⊒ dS ×RLD dS.

dT ◦ dT ⊑ dS ×RLD dS is obvious. □

Definition 2325. I call an endoreloid ν symmetrically transitive iff for every
symmetric endofuncoid f ∈ FCD(Ob ν, Ob ν) we have f ⊑ ν ⇒ f ◦ f ⊑ ν.

Obvious 2326. It is symmetrically transitive if at least one of the following
holds:

1◦. ν ◦ ν ⊑ ν;
2◦. ν ◦ ν−1 ⊑ ν;
3◦. ν−1 ◦ ν ⊑ ν.
4◦. ν−1 ◦ ν−1 ⊑ ν.

Corollary 2327. Every uniform space is symmetrically transitive.

Proposition 2328. (Low)ν is a completely Cauchy space for every symmetri-
cally transitive endoreloid ν.

Proof. Suppose S ∈ P
{

X ∈F
X ×RLDX ⊑ν

}
.

d

{
X ×RLDX

X ∈S

}
⊑ ν; d

{
X ×RLDX

X ∈S

}
◦ d

{
X ×RLDX

X ∈S

}
⊑ ν; dS ×RLD dS ⊑ ν (taken

into account that S has nonempty meet). Thus dS is Cauchy. □

Proposition 2329. The neighbourhood filter ⟨(FCD)ν⟩∗{x} of a point x ∈
Ob ν is a maximal Cauchy filter, if it is a Cauchy filter and ν is a reflexive reloid.
FiXme: Does it holds for all low filters?
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Proof. Let N = ⟨(FCD)ν⟩∗{x}. Let C ⊒ N be a Cauchy filter. We need to
show N ⊒ C .

Since C is Cauchy filter, C ×RLD C ⊑ ν. Since C ⊒ N we have C is a neigh-
borhood of x and thus ↑Ob ν {x} ⊑ C (reflexivity of ν). Thus ↑Ob ν {x} ×RLD C ⊑
C ×RLD C and hence ↑Ob ν {x} ×RLD C ⊑ ν;

C ⊑ im(ν|↑Ob ν {x}) = ⟨(FCD)ν⟩∗{x} = N .

□

10. Cauchy continuous functions

Definition 2330. A function f : U → V is Cauchy continuous from a low
space (U, C ) to a low space (V, D) when ∀X ∈ C : ⟨↑FCD f⟩X ∈ D .

Proposition 2331. Let f be a principal reloid. Then f ∈
C((RLD)LowC , (RLD)LowD) iff f is Cauchy continuous.

f ◦ (RLD)LowC ◦ f−1 ⊑ (RLD)LowD ⇔

l

X ∈C

(f ◦ (X ×RLD X ) ◦ f−1) ⊑ (RLD)LowD ⇔

l

X ∈C

(⟨↑FCD f⟩X ×RLD ⟨↑FCD f⟩X ) ⊑ (RLD)LowD ⇔

∀X ∈ C : ⟨↑FCD f⟩X ×RLD ⟨↑FCD f⟩X ⊑ (RLD)LowD ⇔
∀X ∈ C : ⟨↑FCD f⟩X ∈ D .

Thus we have expressed Cauchy properties through the algebra of reloids.

11. Cauchy-complete reloids

Definition 2332. An endoreloid ν is Cauchy-complete iff every low filter for
this reloid converges to a point.

Remark 2333. In my book [2] complete reloid means something different. I
will always prepend the word “Cauchy” to the word “complete” when meaning is
by the last definition.

https://en.wikipedia.org/wiki/Complete_uniform_space#Completeness

12. Totally bounded

http://ncatlab.org/nlab/show/Cauchy+space

Definition 2334. Low space is called totally bounded when every proper filter
contains a proper Cauchy filter.

Obvious 2335. A reloid ν is totally bounded iff
∀X ∈ P Ob ν∃X ∈ FOb ν : (⊥ ≠ X ⊑↑Ob ν X ∧ X ×RLD X ⊑ ν).

Theorem 2336. A symmetric transitive reloid is totally bounded iff its Cauchy
space is totally bounded.

Proof.
⇒. Let F be a proper filter on Ob ν and let a ∈ atoms F . It’s enough to prove that

a is Cauchy.
Let D ∈ GR ν. Let also E ∈ GR ν is symmetric and E ◦ E ⊆ D.

There existsa finite subset F ⊆ Ob ν such that ⟨E⟩F = Ob ν. Then
obviously exists x ∈ F such that a ⊑↑Ob ν ⟨E⟩{x}, but ⟨E⟩{x}×⟨E⟩{x} =
E−1 ◦ ({x} × {x}) ◦ E ⊆ D, thus a ×RLD a ⊑↑RLD(Ob ν,Ob ν) D.

https://en.wikipedia.org/wiki/Complete_uniform_space#Completeness
http://ncatlab.org/nlab/show/Cauchy+space
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Because D was taken arbitrary, we have a ×RLD a ⊑ ν that is a is
Cauchy.

⇐. Suppose that Cauchy space associated with a reloid ν is totally bounded but
the reloid ν isn’t totally bounded. So there exists a D ∈ GR ν such that
(Ob ν) \ ⟨D⟩F ̸= ∅ for every finite set F .

Consider the filter base

S =
{

(Ob ν) \ ⟨D⟩F
F ∈ P Ob ν, F is finite

}
and the filter F =

d
⟨↑Ob ν⟩S generated by this base. The filter F is

proper because intersection P ∩ Q ∈ S for every P, Q ∈ S and ∅ /∈ S.
Thus there exists a Cauchy (for our Cauchy space) filter X ⊑ F that is
X ×RLD X ⊑ ν.

Thus there exists M ∈ X such that M × M ⊆ D. Let F be a finite
subset of Ob ν. Then (Ob ν) \ ⟨D⟩F ∈ F ⊒ X . Thus M ̸≍ (Ob ν) \ ⟨D⟩F
and so there exists a point x ∈ M ∩ ((Ob ν) \ ⟨D⟩F ).

⟨M × M⟩{p} ⊆ ⟨D⟩{x} for every p ∈ M ; thus M ⊆ ⟨D⟩{x}.
So M ⊆ ⟨D⟩(F ∪{x}). But this means that M ∈ X does not intersect

(Ob ν) \ ⟨D⟩(F ∪ {x}) ∈ F ⊒ X , what is a contradiction (taken into
account that X is proper).

□

http://math.stackexchange.com/questions/104696/
pre-compactness-total-boundedness-and-cauchy-sequential-compactness

13. Totally bounded funcoids

Definition 2337. A funcoid ν is totally bounded iff
∀X ∈ Ob ν∃X ∈ FOb ν : (0 ̸= X ⊑↑Ob ν X ∧ X ×FCD X ⊑ ν).

This can be rewritten in elementary terms (without using funcoidal product:
X ×FCD X ⊑ ν ⇔ ∀P ∈ ∂X : X ⊑ ⟨ν⟩P ⇔ ∀P ∈ ∂X , Q ∈ ∂X : P [ν]∗ Q ⇔

∀P, Q ∈ Ob ν : (∀E ∈ X : (E ∩ P ̸= ∅ ∧ E ∩ Q ̸= ∅) ⇒ P [ν]∗ Q).
Note that probably I am the first person which has written the above formula

(for proximity spaces for instance) explicitly.

14. On principal low spaces

Definition 2338. A low space (U, C ) is principal when all filters in C are
principal.

Proposition 2339. Having fixed a set U , principal reflexive low spaces on U
bijectively correspond to principal reflexive symmetric endoreloids on U .

Proof. ??
http://math.stackexchange.com/questions/701684/union-of-cartesian-

squares □

15. Rest

https://en.wikipedia.org/wiki/Cauchy_filter#Cauchy_filters
https://en.wikipedia.org/wiki/Uniform_space “Hausdorff completion of a uni-

form space” here)
http://at.yorku.ca/z/a/a/b/13.htm : the category Prox of proximity spaces

and proximally continuous maps (i.e. maps preserving nearness between two sets)
is isomorphic to the category of totally bounded uniform spaces (and uniformly
continuous maps).

http://math.stackexchange.com/questions/104696/pre-compactness-total-boundedness-and-cauchy-sequential-compactness
http://math.stackexchange.com/questions/104696/pre-compactness-total-boundedness-and-cauchy-sequential-compactness
https://en.wikipedia.org/wiki/Cauchy_filter#Cauchy_filters
https://en.wikipedia.org/wiki/Uniform_space
http://at.yorku.ca/z/a/a/b/13.htm
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https://en.wikipedia.org/wiki/Cauchy_space http://ncatlab.org/nlab/show/
Cauchy+space

http://arxiv.org/abs/1309.1748
http://projecteuclid.org/download/pdf_1/euclid.pja/1195521991
http://www.emis.de/journals/HOA/IJMMS/Volume5_3/404620.pdf
~/math/books/Cauchy_spaces.pdf
https://ncatlab.org/nlab/show/Cauchy+space defines compact Cauchy spaces!
http://www.hindawi.com/journals/ijmms/1982/404620/abs/ (open access ar-

ticle) describes criteria for a Cauchy space to be uniformizable.

https://en.wikipedia.org/wiki/Cauchy_space
http://ncatlab.org/nlab/show/Cauchy+space
http://ncatlab.org/nlab/show/Cauchy+space
http://arxiv.org/abs/1309.1748
http://projecteuclid.org/download/pdf_1/euclid.pja/1195521991
http://www.emis.de/journals/HOA/IJMMS/Volume5_3/404620.pdf
~/math/books/Cauchy_spaces.pdf
https://ncatlab.org/nlab/show/Cauchy+space
http://www.hindawi.com/journals/ijmms/1982/404620/abs/


CHAPTER 13

Funcoidal groups

Remark 2340. FiXme: Move this into the book. If µ and ν are cocomplete
endofuncoids, then we can describe f ∈ C(µ, ν) without using filters by the formu-
las:

1◦. ⟨f⟩∗⟨µ⟩∗X ⊑ ⟨ν⟩∗⟨f⟩∗
X (for every set X in P Ob µ)

2◦. ⟨µ⟩∗X ⊑ ⟨f−1⟩∗⟨ν⟩∗⟨f⟩∗
X (for every set X in P Ob µ)

3◦. ⟨f⟩∗⟨µ⟩∗⟨f−1⟩∗Y ⊑ ⟨ν⟩∗
Y (for every set Y in P Ob ν)

Funcoidal groups are modeled after topological groups (see Wikipedia) and are
their generalization.

Definition 2341. Funcoidal group is a group G together with endofuncoid µ
on Ob G such that

1◦. (y·) ∈ C(µ; µ) for every y ∈ G;
2◦. (·x) ∈ C(µ; µ) for every x ∈ G;
3◦. (x 7→ x−1) ∈ C(µ; µ) for every x ∈ G.

Proposition 2342. t 7→ y · t · x and t 7→ y · t−1 · x are continuous functions.

Proof. As composition of continuous functions. □

Obvious 2343. Composition of functions of the forms t 7→ y · t · x and t 7→
y · t−1 · x are also a function of one of these forms.

What is the purpose of the following (yet unproved) proposition? I don’t know,
but it looks curious.

Proposition 2344. Let E be a composition of functions of a form ⟨µ⟩∗, ⟨y·⟩∗,
⟨·x⟩∗, ⟨−1⟩∗ (where x and y vary arbitrarily) such that µ is met in the composition
at least once. Let also either µ = µ ◦ µ or µ is met exactly once in the product.
There are such elements x0, y0 that either

1◦. (t 7→ y0 · t · x0) ◦ ⟨µ⟩ ⊑ E ⊑ ⟨µ⟩ ◦ (t 7→ y0 · t · x0);
2◦. (t 7→ y0 · t−1 · x0) ◦ ⟨µ⟩ ⊑ E ⊑ ⟨µ⟩ ◦ (t 7→ y0 · t−1 · x0).

Proof. Using continuity a few times we prove that E ⊑ ⟨µ⟩∗ ◦ . . . ◦ ⟨µ⟩∗ ◦
fn ◦ . . . ◦ f1 where fi are functions of the forms t 7→ y · t · x or t 7→ y · t−1 · x for
n ∈ N. But ⟨µ⟩∗ ◦ . . . ◦ ⟨µ⟩∗ = ⟨µ⟩∗ by conditions and fn ◦ . . . ◦ f1 is of the form
t 7→ y · t · x or t 7→ y · t−1 · x by above proposition. E ⊑ ⟨µ⟩ ◦ (t 7→ y0 · t · x0) or
E ⊑ ⟨µ⟩ ◦ (t 7→ y0 · t−1 · x0)

The second inequalty is similar. Note that x0 and y0 are the same for the first
and for the second item. □

(G, µ) vs (G, µ−1) are they isomorphic?
FiXme: We can also define reloidal groups.
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1. On “Each regular paratopological group is completely regular”
article

In this chapter I attempt to rewrite the paper [1] in more general setting of
funcoids and reloids. I attempt to construct a “royal road” to finding proofs of
statements of this paper and similar ones, what is important because we lose 60
years waiting for any proof.

1.1. Definition of normality. By definition (slightly generalizing the special
case if µ is a quasi-uniform space from [1]) a pair of an endo-reloid µ and a complete
funcoid ν (playing role of a generalization of a topological space) on a set U is normal
when 〈

ν−1〉∗
A ⊑

〈
ν−1◦

〉∗〈
ν−1〉∗⟨F ⟩∗

A

for every entourage F ∈ up µ of µ and every set A ⊆ U .
Note that this is not the same as customary definition of normal topological

spaces.

Theorem 2345. An endoreloid µ is normal on endoreloid ν iff
ν ◦ ν−1 ⊑ ν−1 ◦ (FCD)µ.

Proof. Equivalently transforming the criterion of normality (which should
hold for all F ∈ up µ) using proposition 2189:

⟨ν⟩∗〈
ν−1〉∗

A ⊑
〈
ν−1〉∗⟨F ⟩∗

A.
Also notedF

F ∈up µ

〈
ν−1〉∗⟨F ⟩∗

A = (because funcoids preserve filtered meets) =〈
ν−1〉∗ dF

F ∈up µ⟨F ⟩∗
A =

〈
ν−1〉∗⟨(FCD)µ⟩∗

A.
Thus the above is equivalent to ⟨ν⟩∗〈

ν−1〉∗
A ⊑

〈
ν−1〉∗⟨(FCD)µ⟩∗

A.
And this is in turn equivalent to

ν ◦ ν−1 ⊑ ν−1 ◦ (FCD)µ.

□

Definition 2346. An endofuncoid µ is normal on endofuncoid ν when ν◦ν−1 ⊑
ν−1 ◦ µ. FiXme: No need for ν to be endomorphism.

Obvious 2347.
1◦. Endoreloid µ is normal on endofuncoid ν iff endofuncoid (FCD)µ is normal

on endofuncoid ν.
2◦. Endofuncoid µ is normal on endoreloid ν iff endofuncoid (RLD)inµ is nor-

mal on endofuncoid ν.

Corollary 2348. If ν is a symmetric endofuncoid and µ ⊒ ν−1, then it is
normal.

Corollary 2349. (generalization of proposition 1 in [1]) If ν is a symmetric
endofuncoid and Compl µ ⊒ ν−1, then it is normal.

Definition 2350. A funcoid ν is normally reloidazable iff there exist a reloid µ
such that (µ, ν) is normal and ν = Compl(FCD)µ.

Definition 2351. A funcoid ν is normally quasi-uniformizable iff there exist a
quasi-uniform space (= reflexive and transitive reloid) µ such that (µ, ν) is normal
and ν = Compl(FCD)µ.

Proposition 2352. A funcoid ν is normally reloidazable iff there exist a fun-
coid µ such that µ is normal on ν and ν = Compl µ.
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Proposition 2353. A funcoid ν is normally quasi-uniformizable iff there exist
a quasi-proximity space (= reflexive and transitive funcoid) µ such that µ is normal
on ν and ν = Compl µ.

Proof. Obvious 2347 and the fact that (FCD) is an isomorphism between
reflexive and transitive funcoids and reflexive and transitive reloids. □

In other words, it is normally reloidazable or normally quasi-uniformizable when

(Compl µ) ◦ (Compl µ)−1 ⊑ (Compl µ)−1 ◦ µ

for suitable µ.

1.2. Urysohn’s lemma and friends. For a detailed proof of Urysohn’s
lemma see also:
http://homepage.math.uiowa.edu/~jsimon/COURSES/M132Fall07/
UrysohnLemma_v5.pdf
https://proofwiki.org/wiki/Urysohn’s_Lemma
http://planetmath.org/proofofurysohnslemma

https://en.wikipedia.org/wiki/Proximity_space says that “The resulting
topology is always completely regular. This can be proven by imitating the usual
proofs of Urysohn’s lemma, using the last property of proximal neighborhoods to
create the infinite increasing chain used in proving the lemma.”

Below follows an alternative proof of Urysohn lemma. The proof was based on
a conjecture proved false, see example 1344!

Lemma 2354. If ⟨µ⟩A ≍ B for a complete funcoid µ and A, B are filters on
relevant sets, then there exists U ∈ up µ such that ⟨U⟩A ≍ B.

Proof. Prove that
{

⟨U⟩A
U∈up µ

}
is a filter base. That it is nonempty is obvious.

Let X , Y ∈
{

⟨U⟩A
U∈up µ

}
. Then X = ⟨UX ⟩A, Y = ⟨UY⟩⟨A⟩. Because µ is complete,

we have (proposition 1124) UX ⊓UY ∈ up µ. Thus X , Y ⊒ ⟨UX ⊓ UY⟩A ∈
{

⟨U⟩A
U∈up µ

}
.

Thus ⟨µ⟩A ≍ B ⇔ B ⊓ ⟨µ⟩A = ⊥ ⇔ ∃U ∈ up µ : B ⊓ ⟨U⟩A = ⊥ ⇔ ∃U ∈ up µ :
⟨U⟩A ≍ B. □

Corollary 2355. If ⟨µ⟩A ≍ ⟨µ⟩B for a complete funcoid µ and A, B are filters
on relevant sets, then there exists U ∈ up µ such that ⟨U⟩A ≍ ⟨U⟩B.

Proof. Applying the lemma twice we can obtain P, Q ∈ up µ such that
⟨P ⟩A ≍ ⟨Q⟩B. But because µ is complete, we have U = P ⊓ Q ∈ up µ, while
obviously ⟨U⟩A ≍ ⟨U⟩B. □

Lemma 2356. (assuming conjecture 1344) For every U ∈ up µ (where µ is a
T4 topological space) such that ¬

(
A

[
U ◦ U−1]∗

B
)

there is W ∈ up µ such that

U ◦U−1 ⊒ W ◦W −1 ◦W ◦W −1. For it holds ¬
(

A
[
W ◦ W −1]∗

B
)

. We can assume
that ⟨W ⟩∗

X is open for every set X.

Proof. U ◦ U−1 ∈ up(µ ◦ µ−1) ⊆ up(µ ◦ µ−1 ◦ µ ◦ µ−1) (normality used). Thus
by the conjecture there exists W ∈ up µ such that U ◦ U−1 ⊒ W ◦ W −1 ◦ W ◦ W −1.
W ◦ W −1 ⊑ U ◦ U−1 thus ¬

(
A

[
W ◦ W −1]∗

B
)

.
To prove that ⟨W ⟩∗

X is open for every set X, replace every ⟨W ⟩∗{x} with an
open neighborhood E ⊆ ⟨W ⟩∗

X of ⟨µ⟩∗{x} (and note that union of open sets is
open). This new W holds all necessary properties. □

http://homepage.math.uiowa.edu/~jsimon/COURSES/M132Fall07/UrysohnLemma_v5.pdf
http://homepage.math.uiowa.edu/~jsimon/COURSES/M132Fall07/UrysohnLemma_v5.pdf
https://proofwiki.org/wiki/Urysohn's_Lemma
http://planetmath.org/proofofurysohnslemma
https://en.wikipedia.org/wiki/Proximity_space
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Lemma 2357. (assuming conjecture 1344) For every U ∈ up µ (where µ is a
T4 topological space) such that ¬

(
A

[
U ◦ U−1]∗

B
)

there is W ∈ up µ such that

U ◦ U−1 ⊒ µ−1 ◦ W ◦ W −1 ◦ W ◦ W −1. For it holds ¬
(

A
[
W ◦ W −1]∗

B
)

. We can
assume that ⟨W ⟩∗

X is open for every set X.

Proof. Applying the previous lemma twice, we have some open W ∈ up µ
such that

U ◦ U−1 ⊒ W ◦ W −1 ◦ W ◦ W −1 ◦ W ◦ W −1 ◦ W ◦ W −1

and ¬
(

A
[
W ◦ W −1]∗

B
)

. From this easily follows that

U ◦ U−1 ⊒ µ−1 ◦ W ◦ W −1 ◦ W ◦ W −1.

□

A modified proof of Urysohn’s lemma follows. This proof is in part based on [1].
(I attempt to find common generalization of Urysohn’s lemma and results from [1]).

Q2
def=

{
k/2n

k,n∈N,0<k<2n

}
.

Theorem 2358. Urysohn’s lemma (see Wikipedia) for disjoint closed sets A
and B and function f on a topological space µ (considered as complete funcoid).

Proof. (assuming conjecture 1344) (used ProofWiki among other sources)
Because A and B are disjoint closed sets, we have ⟨µ⟩∗

A ≍ ⟨µ⟩∗
B. Thus by

the corollary 2355 take S0 ∈ up µ and ¬
(

A
[
S0 ◦ S−1

0
]∗

B
)

.
We have µ ◦ µ−1 ◦ µ ◦ µ−1 ⊑ µ ◦ µ−1 that is up(µ ◦ µ−1 ◦ µ ◦ µ−1) ⊇ up(µ ◦ µ−1).
Let’s prove by induction: There is a sequence S of binary relations starting with

S0 such that ¬
(

A
[
Si ◦ S−1

i

]∗
B

)
and Si ◦ S−1

i ⊒ µ−1 ◦ Si+1 ◦ S−1
i+1 ◦ Si+1 ◦ S−1

i+1.
It directly follows from the lemma (and uses the conjecture).

Denote Ui = Si+1 ◦ S−1
i+1. We have Ui ⊒ µ−1 ◦ Ui+1 ◦ Ui+1 and ¬

(
A [Ui]∗ B

)
.

By reflexivity of µ we have Ui+1 ⊆ Ui+1 ◦ Ui+1 ⊆ Ui.
Define fractional degree of U : Ur def= Ur1

1 ◦ . . . ◦ U
rlr

lr
for every r ∈ Q2 where

r1 . . . rlr
is the binary expansion of r.

Prove Ur ⊆ U0. It is enough to prove U0 ⊇ U1 ◦ . . . ◦ Ulr . It follows from
U2 ◦ . . . ◦ Ulr ⊆ U1, U3 ◦ . . . ◦ Ulr ⊆ U2, . . . , Ulr ⊆ Ulr−1 what was shown above.

Let’s prove: For each p, q ∈ Q2 such that p < q we have µ−1 ◦ Up ⊑ Uq. We
can assume binary expansion of p and q be the same length c (add zeros at the end
of the shorter one). Now it is enough to prove

Uk ◦ U
qk+1
k+1 ◦ · · · ◦ Uqc

c ⊒ µ−1 ◦ U
pk+1
k+1 ◦ U

pk+2
k+2 ◦ · · · ◦ Upc

c .

But for this it’s enough
Uk ⊒ µ−1 ◦ Uk+1 ◦ Uk+2 ◦ · · · ◦ Uc

what can be easily proved by induction: If k = c then it takes the form Uk ⊒ µ−1

what is obvious. Suppose it holds for k. Then Uk−1 ⊒ µ−1 ◦ Uk ◦ Uk ⊒ µ−1 ◦ Uk ◦
µ−1 ◦ Uk+1 ◦ Uk+2 ◦ · · · ◦ Uc ⊒ µ−1 ◦ Uk ◦ Uk+1 ◦ Uk+2 ◦ · · · ◦ Uc, that is it holds for
all natural k ≤ c.

It is easy to prove that ⟨Ur⟩∗
X is open for every set X.

We have
〈
µ−1〉∗⟨Up⟩∗

X ⊑ ⟨Uq⟩∗
X.

f(z) def= inf
(

{1} ∪
{

q ∈ Q2

z ∈ ⟨Uq⟩∗
A

})
.

f is properly defined because {1} ∪
{

q∈Q2
z∈⟨Uq⟩∗A

}
is nonempty and bounded.
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If z ∈ A then z ∈ ⟨Uq⟩∗
A for every q ∈ Q2, thus f(z) = 0, because obviously

Uq ⊒ 1.
If z ∈ B then z /∈ ⟨Uq⟩∗

A for every q ∈ Q2, thus f(z) = 1, because Uq ⊑ U0.
It remains to prove that f is continuous.
Let D(x) = {1} ∪

{
q∈Q2

z∈⟨Uq⟩∗A

}
.

To show that f is continuous, we first prove two smaller results:
(a) x ∈

〈
µ−1〉∗⟨Ur⟩∗

A ⇒ f(x) ≤ r.
We have x ∈

〈
µ−1〉∗⟨Ur⟩∗

A ⇒ ∀s > r : x ∈ ⟨Us⟩∗
A, so D(x) contains all

rationals greater than r. Thus f(x) ≤ r by definition of f .
(b) x /∈ ⟨Ur⟩∗

A ⇒ f(x) ≥ r.
We have x /∈ ⟨Ur⟩∗

A ⇒ ∀s < r : x /∈ ⟨Us⟩∗
A. So D(x) contains no rational less

than r. Thus f(x) ≥ r.
Let x0 ∈ S and let ]c; d[ be an open real interval containing f(x). We will find

a neighborhood T of x0 such that ⟨f⟩∗
T ⊆]c; d[.

Choose p, q ∈ Q such that c < p < f(x0) < q < d. Let T = ⟨Uq⟩∗
A \〈

µ−1〉∗⟨Up⟩∗
A.

Then since f(x0) < q, we have that (b) implies vacuously that x ∈ ⟨Uq⟩∗
A.

Since f(x0) > p, (a) implies x0 /∈ ⟨Up⟩∗
A.

Hence x0 ∈ T . Then T is a neighborhood of x0 because T is open.
Finally, let x ∈ T .
Then x ∈ ⟨Uq⟩∗

A ⊆
〈
µ−1〉∗⟨Uq⟩∗

A. So f(x) ≤ q by (a).
Also x /∈

〈
µ−1〉∗⟨Up⟩∗

A, so x /∈ ⟨Up⟩∗
A and f(x) ≥ p by (b).

Thus: f(x) ∈ [p; q] ⊆]c; d[.
Therefore f is continuous.
Claim A: f(x) > q ⇒ x /∈ ⟨µ−1⟩∗⟨Uq⟩∗

A
Claim B: f(x) < q ⇒ x ∈ ⟨Uq⟩∗

A
Proof of claim A: If f(x) > q then then there must be some gap between

q and D(x); in particular, there exists some q′ such that q < q′ < f(x). But
q′ < f(x) ⇒ x /∈ ⟨Uq⟩∗

A ⇒ x /∈
〈
µ−1〉∗⟨Uq⟩∗

A (using that ⟨Ur⟩∗
X is open).

Proof of claim B: If f(x) < q then there exists q′ ∈ D(x) such that f(x) < q′ <
q, in which case q ∈ D(x), so x ∈ ⟨Uq⟩∗A.

To show that f is continuous, it’s enough to prove that preimages of ]a; 1] and
[0; a[ are open.

Suppose f(x) ∈]a; 1]. Pick some q with a < q < f(x). We claim that the
open set W = X \

〈
f−1〉∗⟨Uq⟩∗A is a neighborhood of x that is mapped by f into

]a; 1]. First, by (A), f(x) > q ⇒ x ∈ W , so W is a neighborhood of x. If y is
any point of W , then f(y) must be ≥ q > a; otherwise, if f(y) < q, then, by (B)
y ∈ ⟨Uq⟩∗

A ⊆
〈
f−1〉∗⟨Uq⟩∗

A.
Suppose x ∈ f−1[0; b[ that is f(x) < b and pick q such that f(x) < q < b. By

(B) x ∈ ⟨Uq⟩∗
A. We claim that the neighborhood ⟨Uq⟩∗

A is mapped by f into
[0; b[. Suppose y is any point of ⟨Uq⟩∗

A. Then q ∈ D(y), so f(y) ≤ q < b. □

Theorem 2359. (from [1]) If µ is a normal quasi-uniformity on a topolog-
ical space ν, then for any nonempty subset A ∈ Ob ν and entourage U ∈ up µ
there exists a continuous function f : Ob ν → [0; 1] such that A ⊑

〈
f−1〉∗{0} ⊑〈

f−1〉∗[0; 1[⊑
〈
ν−1◦〉∗〈

ν−1〉∗⟨U⟩∗
A.

Proof. Choose inductively a sequence of entourages (Un)∞
n=0 such that U0 =

U and Un+1 ◦ Un+1 ⊑ Un.
Denote lr = max

{
n∈N
rn=1

}
.

Define Ur = U
rlr

lr
◦ . . . ◦ Ur1

1
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Prove
〈
ν−1〉∗⟨Uq⟩∗

A ⊑
〈
ν−1◦〉∗〈

ν−1〉∗⟨Ur⟩∗
A for any q < r in Q2. FiXme:

Can be easily rewritten with the formula ⟨ν⟩∗〈
ν−1〉∗⟨Uq⟩∗

A ⊑
〈
ν−1〉∗⟨Ur⟩∗

A in-
stead. It may extend to non-complete funcoids.

There is such l that 0 = ql < rl = 1 and qi = ri for all i < l.
It follows lq ̸= l ≤ lr.
Consider variants:

lq < l.
〈
ν−1〉∗⟨Uq⟩∗

A ⊑
〈
ν−1〉∗

〈
Ulq ◦ . . . ◦ U

q1qlq

1

〉∗
A =〈

ν−1〉∗
〈

U
rlq

lq
◦ . . . ◦ Ur1

1

〉∗
A ⊑ ⟨ν−1⟩∗〈

U
rl−1
l−1 ◦ . . . ◦ Ur1

1
〉∗

A ⊑
⟨ν−1◦⟩∗〈

ν−1〉∗⟨Url

l ◦ U
rl−1
l−1 ◦ . . . ◦ Ur1

1 ⟩∗A = ⟨ν−1◦⟩∗〈
ν−1〉∗⟨Ur⟩∗A

(use Url

l ∈ up(FCD)µ by theorem 992).
l < lq. Inclusions Uk ◦ Uk ⊑ Uk−1 for l < k ≤ lq + 1 guarantee that Ulq+1 ◦ Ulq

◦
. . . ◦ Ul+1 ⊑ Ul and then

〈
ν−1〉∗⟨Uq⟩∗

A ⊑
〈
ν−1〉∗

〈
U

qlq

lq
◦ . . . ◦ Uq1

1

〉∗
A ⊑〈

ν−1◦〉∗〈
ν−1〉∗

〈
U

qlq+1
lq+1 ◦ U

qlq

lq
◦ . . . ◦ Uq1

1

〉∗
A =〈

ν−1◦〉∗〈
ν−1〉∗

〈
Ulq+1 ◦ U

qlq

lq
◦ . . . ◦ U0

l ◦ . . . ◦ Uq1
1

〉∗
A ⊑〈

ν−1◦〉∗〈
ν−1〉∗⟨Ul ◦ U

ql−1
l−1 ◦ . . . ◦ Uq1

1 ⟩∗A ⊑〈
ν−1◦〉∗⟨ν−1⟩∗〈

Url

l ◦ U
rl−1
l−1 ◦ . . . ◦ Ur1

1
〉∗

A ⊑
⟨ν−1◦⟩∗〈

ν−1〉∗〈
U

rlr

lr
◦ . . . ◦ Ur1

1
〉∗

A =
〈
ν−1◦〉∗〈

ν−1〉∗⟨Ur⟩∗A.

Define f by the formula f(z) = inf
(

{1} ∪
{

q∈Q2
z∈⟨ν−1⟩∗⟨Uq⟩∗A

})
.

It is clear?? that A ⊑
〈
f−1〉∗{0} and

〈
f−1〉∗[0; 1[⊑

⋃
q∈Q2

〈
ν−1〉∗⟨Uq⟩∗A =⋃

r∈Q2
⟨ν−1◦⟩∗〈

ν−1〉∗⟨Ur⟩∗
A ⊑

〈
ν−1◦〉∗⟨ν−1⟩∗⟨U0⟩∗A.

To prove that the map f : X → [0, 1] is continuous, it suffices to check that
for every real number a ∈]0; 1[ the sets ⟨f−1⟩∗[0; a[ and

〈
f−1〉∗]a; 1] are open. This

follows from the equalitites〈
f−1〉∗[0; a[=

⋃
Q2∋q<a

〈
ν−1◦〉∗〈

ν−1〉∗⟨Uq⟩∗
A and

〈
f−1〉∗]a; 1] =

⋃
Q2∋r>a(X \

⟨ν−1⟩∗⟨Ur⟩∗
A). □

How the formulas for normal (T4) topological spaces and normal quasi-
uniformities are related? Maybe this works: Replacing ν → µ ◦ µ−1, µ → 1 makes
ν ◦ ν−1 ⊑ ν−1 ◦ (FCD)µ → µ ◦ µ−1 ◦ µ ◦ µ−1 ⊑ µ ◦ µ−1.

https://www.researchgate.net/project/The-lattice-LG-of-group-topologies

https://www.researchgate.net/project/The-lattice-LG-of-group-topologies


CHAPTER 14

Micronization

I defined “micronization” wrongly in my book and did some erroneous proofs
about it. Here is an attempt to salvage it.

https://en.wikipedia.org/wiki/Transitive_reduction is a special case of mi-
cronization. (Hm, maybe them coincide only for finite sets?)

Definition 2360. Micronization µ(E) of a binary relation E is defined by the
formula:

µ(E) =
RLDl {

f ∈ RLD
S∗(f) ⊒ E ∧ f ≍ f2.

}
It’s wrong (consider micronization of ≤ on real numbers (which should be

addition of infinite small).

Question 2361. Under which conditions S∗(µ(E)) = E?

56

https://en.wikipedia.org/wiki/Transitive_reduction


CHAPTER 15

More on connectedness

1. For topological spaces

Proposition 2362. The following are pairwise equivalent:
1◦. a topological space on a set U is connected. FiXme: definition; can the

topological definition be generalized to filters?
2◦. U is connected regarding f ⊔ f−1 if f is the corresponding complete fun-

coid.
3◦. U is connected regarding f ⊔ f−1 if f is the corresponding closure space.
4◦. U is connected regarding f◦f−1 if f is the corresponding complete funcoid.

Proof. ?? □

Proposition 2363. There are filters A, B, such that there are no filters X ⊑ A,
Y ⊑ B such that X ⊔ Y = A ⊔ B and X ≍ Y.

Proof. https://math.stackexchange.com/questions/2639206
(It also follows that sometimes Z(Da) is not a complete lattice, because other-

wise we could prove this theorem.) □

Proposition 2364. If A, B are filters and A ⊔ B = U is principal filter, then
there are sets X ⊑ A, Y ⊑ B such that X ⊔ Y = U and X ≍ Y .

Proof. Take X = Cor A and Y ′ = Cor B. Then X ⊔ Y ′ = U because of
co-separability of F(U). Take Y = U \ X. Then X ⊔ Y = U and X ≍ Y . □

Proposition 2365. A principal filter A is connected regarding endofuncoid µ
iff

∀X, Y ∈ P(Ob µ) \ {⊥} : (X ⊔ Y = A ∧ X ≍ Y ⇒ X [µ] Y ).

Proof. Easily follows from ??. □

Definition 2366. Connected component of a filter regarding a funcoid or a
reloid is a maximal connected subfilter of this filter.

Obvious 2367. Subfilter of a connected filter is connected.

Proposition 2368. If U is a principal filter, then it is connected regarding µ
iff it is connected regarding S(µ). FiXme: It should be presented as a corollary of
a below theorem.

Proof. If U is connected regarding µ, it is connected regarding S(µ), obvi-
ously.

Suppose U is connected regarding S(µ). Then for X, Y ∈ P(Ob µ) \ {⊥} we
have if X ⊔ Y = U and X ≍ Y , then X [S(µ)] Y . So X × Y ̸≍ 1 ⊔ µ ⊔ µ2 ⊔ . . .
and thus by distributivity for principal filter we have X × Y ̸≍ µn for some n ≥??
that is X [µn] Y for some n and thus there are atomic filters p0, . . . , pn such
that p0 ∈ atomsF X, pn ∈ atomsF Y and pi [µ] pi+1. Thus there is k such that
pk [µ] pk+1 and pk ∈ atomsF X, pk+1 ∈ atomsF Y . Thus X [µ] Y . We have U
connected regarding µ. □
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Also for S∗

Example 2369. Connected components may not form a weak partition.

Proof. Consider funcoid 1FCD(R) ⊔ (∆ ×FCD ∆) on real line. Then connected
components are (prove!) non-zero singletons and ∆. It is not a weak partition. □

Conjecture 2370. If the set of connected components is finite, then it is a
strong partition. Moreover the set of connected components is a tearing.

Add more counter-examples (for non-principal filters).

Obvious 2371. Improper filter ⊥F is connected regarding:
1◦. every funcoid;
2◦. every reloid.

Proposition 2372. The only filter connected regarding
1◦. ⊥FCD(A);
2◦. ⊥RLD(A)

is the improper filter ⊥F .

Proof.
1◦. Let A be a filter. Take X = Y = A ∈ F (Ob µ) \ {⊥}. Then X ⊔ Y = A

but not X [µ] Y.
2◦. S∗

1 (⊥RLD(A)) = S1(⊥RLD(A)) = ⊥RLD(A). Thus the only connected filter
is ⊥F .

□

Proposition 2373. Connected filters regarding
1◦. 1FCD(A);
2◦. 1RLD(A)

are exactly ultrafilters and the improper filter.

Proof. 1. That ultrafilters are connected follows from the fact that for every
non-least X , Y such that X ⊔ Y = A we have X = Y = A and thus X [1FCD(A)] Y.
So ultrafilters are connected; so is improper filter too, because improper filter is
always connected.

It remains to prove that filters containing more than one distinct ultrafilter are
not connected. Really let distinct ultrafilters a, b ∈ atoms A. Then not a [1FCD(A)] b.
Thus A is not connected.

2. A filter a is connected iff S∗
1 (1RLD(A) ⊓ (a ×RLD a)) ⊒ a ×RLD a that is iff

S∗
1 (idRLD

a ) ⊒ a ×RLD a,d
F ∈up idRLD

a
S1(F ) ⊒ a ×RLD a what by properties of generalized filter bases is

equivalent to
d

A∈up a S1(idA) ⊒ a×RLD a;
d

A∈up a idA ⊒ a×RLD a; idRLD
a ⊒ a×RLD a.

This is true exactly for ultrafilters and the improper filter. □

Definition 2374. A path regarding funcoid µ is a tuple p0, . . . , pn (n ∈ N) of
atomic filters such that pi [µ] pi+1 for every i = 0, . . . , n − 1.

The number n is called path length.
A path is between atomic filters a and b iff p0 = a and pn = b.

Example 2375. µ ⊒ idFCD
A is not necessary for a filter A to be connected

regarding a funcoid µ. Moreover µ ⊒ 1FCD is not necessary for a filter ⊤ to be
connected regarding a funcoid µ.
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Proof. For counterexample take µ = ⊤ \ 1.
⟨µ⟩{x} = ⊤ \ {x} (thus µ ̸⊒ 1FCD) and ⟨µ⟩a = ⊤ for a nontrivial ultrafilter a.
Let X , Y ∈ F (Ob µ) \ {⊥} and X ⊔ Y = ⊤. If X is a trivial ultrafilter then

⟨µ⟩X = ⊤ \ {x} adn thus ⟨µ⟩X ̸≍ Y, otherwise ⟨µ⟩X ̸≍ Y. So in any case X [µ] Y.
Funcoid µ is connected. □

Proposition 2376. If there is a nonzero-length path regarding µ in the filter
A between any two its atomic subfilters, then it is connected regarding µ.

Proof. Let X ⊔ Y = A, X ̸= ⊥, Y ̸= ⊥. Let p0, . . . , pn (n ≥ 1)
be a path in A and p0 ∈ atoms X and pn ∈ atoms Y. Then (take k =
min{i ∈ {0, . . . , n − 1} | pi+1 ∈ atoms Y}) there are pk, pk+1 such that pk ∈
atoms X , pk+1 ∈ atoms Y. But pk [µ] pk+1 by definition of path. Thus X [µ] Y. □

Proposition 2377. If a filter A is connected regarding funcoid µ reflexive on
A then it is connected regarding every µn for n ∈ Z+.

Proof. Let X ⊔ Y = A, X ̸= ⊥, Y ̸= ⊥. We have ⟨µ⟩X ̸≍ Y.
Then ⟨µ⟩X ̸⊑ X ; therefore by reflexivity ⟨µ⟩X ⊐ X . Repeating this step we

get ⟨µ⟩⟨µ⟩X ⊐ X that is ⟨µ2⟩X ⊐ X , etc.
We have ⟨µn⟩X ⊐ X and thus ⟨µn⟩X ̸≍ Y that is X [µn] Y. □

Example 2378. Connected funcoid without a path between given ultrafilters.

Proof. Consider |R|. It is connected (prove!) but there is no path (prove!)
between two distinct singletons. □

Theorem 2379. If meet of two connected (regarding a funcoid) filters is non-
least, then their join is connected.

Proof. Let A and B be intersecting filters, both connected regarding an endo-
funcoid µ. Let X ⊔Y = A⊔B for proper filters X , Y. Then either X or Y intersects
A ⊓ B. Without loss of generality assume X ⊓ A ⊓ B ≠ ⊥. Also Y intersects either
A or B. Without loss of generality assume Y ⊓ A ̸= ⊥.

Note X ⊓ A ≠ ⊥.
We have (X ⊓A)⊔(Y ⊓A) = (X ⊔Y)⊓A = (A⊔B)⊓A = A. So X ⊓A [µ] Y ⊓A

because A is connected, consequently X [µ] Y that is A ⊔ B is connected. □

Theorem 2380. If meet of two connected (regarding a reloid) filters is
nonempty, then their join is connected.

Proof. Let S∗
1 (µ ⊓ (A × A)) = A × A; S∗

1 (µ ⊓ (B × B)) = B × B for filters
A ̸≍ B.

S∗
1 (µ⊓ ((A⊔B)× (A⊔B))) = S∗

1 (µ⊓ ((A×A)⊔ (B ×B)⊔ (A×B)⊔ (B ×A))) ⊒
S∗

1 (µ ⊓ (A × A)) ⊔ S∗
1 (µ ⊓ (B × B)) ⊒ (A × A) ⊔ (B × B).

Let for example x ∈ atoms A. Then ⟨S∗
1 (µ ⊓ ((A ⊔ B) × (A ⊔ B)))⟩x ⊒ A and

(taking into account A ̸≍ B):
⟨µ ⊓ ((A ⊔ B) × (A ⊔ B))⟩⟨S∗

1 (µ ⊓ ((A ⊔ B) × (A ⊔ B)))⟩x ⊒ B.

Thus ⟨S∗
1 (µ⊓((A⊔B)×(A⊔B)))⟩x ⊒ A and ⟨S∗

1 (µ⊓((A⊔B)×(A⊔B)))⟩x ⊒ B for
every ultrafilter x ∈ atoms(A ⊔ B), that is ⟨S∗

1 (µ ⊓ ((A ⊔ B) × (A ⊔ B)))⟩x ⊒ A ⊔ B.
So S∗

1 (µ ⊓ ((A ⊔ B) × (A ⊔ B))) ⊒ A ⊔ B that is A ⊔ B is connected. □

Corollary 2381. Distinct connected components (for both a funcoid or a
reloid) don’t intersect.

Proof. If connected components A ≠ B intersect, then A ⊔ B is a connected
filter and either A ⊔ B ⊐ A or A ⊔ B ⊐ B what contradicts to the definition of
connected components. □



1. FOR TOPOLOGICAL SPACES 60

If we add the requirement X ≍ Y to the definition of connected regarding
funcoid, it is nonequivalent. Proof??: Consider connectedness of an ultrafilter.

Proposition 2382. S(µ) = S1(µ ⊔ 1) if µ is an endorelation, endofuncoid, or
endoreloid. FiXme: for S∗, too.

Proof. By proved above (µ ⊔ 1)n = 1 ⊔ µ ⊔ . . . ⊔ µn.
Thus S1(µ ⊔ 1) = (1 ⊔ µ) ⊔ (1 ⊔ µ ⊔ µ2) ⊔ . . . = 1 ⊔ µ ⊔ µ2 ⊔ . . . = S(µ). □

FiXme: also algebraic properties of S1 and S∗
1

Theorem 2383. FiXme: Move this theorem in the book, X [
d

S] Y ⇔ ∀f ∈
S : X [f ] Y if S is a generalized filter base.

Proof. X [
d

S] Y ⇔ (X ×FCD Y) ⊓
d

S ̸= ⊥ ⇔
d

f∈S f ⊓ (X ×FCD Y) ̸= ⊥ ⇔
(by properties of generalized filter bases) ⇔ ∀f ∈ S : f ⊓ (X ×FCD Y) ̸= ⊥ ⇔ ∀f ∈
S : X [f ] Y. □

Theorem 2384. The following are pairwise equivalent for a funcoid µ and filter
A:

1◦. A is connected regarding funcoid µ
2◦. A is connected regarding every funcoid in up µ.
3◦. A is connected regarding every funcoid in upΓ µ.

Proof. TODO: “Connectedness” should be moved after “Funcoids are filters”
to use Γ in this proof.

1⇒2⇒3. Obvious.
3⇒1. Let X , Y ∈ F (Ob µ) and X ⊔ Y = A. Then ∀f ∈ upΓ µ : X [f ] Y.

Therefore by the theorem ?? X
[d

upΓ µ
]

Y that is X [µ] Y. So A is connected
regarding µ. □

Conjecture 2385. For a Rel-morphism F and a filter A the following are
pairwise equivalent:

1◦. A is connected regarding ↑FCD F .
2◦. A is connected regarding ↑RLD F .
3◦. there is a F -path in A for every two ultrafilters a, b ∈ atoms A.

Proposed counterexample against A is connected regarding f iff it is connected
regarding (FCD)f : f = A ×RLD

F A. First calculate (B ×RLD
F C) ◦ (A ×RLD

F B) (and
also for oblique product).

Trying to calculate (B ×RLD
F C) ◦ (A ×RLD

F B):

Lemma 2386. There are such filters A, B, C and binary relation h that

h ⊒ A ×FCD C ∧ ¬∃g ∈ Rel : (g ⊒ B ×FCD C ∧ h ⊒ g ◦ (A ×FCD B)).

Proof. Take A a principal filter, B a trivial ultrafilter and h ⊒ A ×FCD C such
that h /∈ up(A ×RLD C). (It exists because A ×RLD C ̸= A ×RLD

F C.
Suppose that g ⊒ B ×FCD C. Then there is C ∈ up C such that g ⊒ B × C.

Therefore g ◦ (A ×FCD B) = A ×FCD ⟨g⟩B ⊒ A ×FCD C = A × C.)
But h /∈ up(A ×RLD C) = up(A × C). Thus h ̸ ⊒ g ◦ (A ×FCD B). □

Corollary 2387. There are such filters A, B, C and binary relation h that

h ⊒ A ×FCD C ∧ ¬∃f, g ∈ Rel : (f ⊒ A ×FCD B ∧ g ⊒ B ×FCD C ∧ h ⊒ g ◦ f).

Proposition 2388. (B ×RLD
F C)◦ (A×RLD

F B) ̸= A×RLD
F C for some proper filters

A, B, C.
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Proof. FiXme: The proof is erroneous.
Take (lemma) h ∈ up(A ×FCD C) such that for every f ∈ up(A ×RLD

F C), g ∈
up(B ×RLD

F C) we have h ̸⊒ g ◦ f .
We have h ∈ up(A ×RLD

F C) and for every f ∈ up(A ×RLD
F C), g ∈ up(B ×RLD

F C)
we have [error] h ̸⊒ g ◦ f .

Thus up((B ×RLD
F C) ◦ (A ×RLD

F B)) ̸= up(A ×RLD
F C). □



CHAPTER 16

Relationships are pointfree funcoids

Theorem 2389. ((FCD), (RLD)in) are components of a complete pointfree fun-
coid.

Proof. For every ultrafilters x and y we have x [(FCD)(f ⊓ (RLD)ing)] y ⇔
x ×RLD y ̸≍ f ⊓ (RLD)ing ⇔ x ×RLD y ⊑ (RLD)ing ∧ x ×RLD y ̸≍ f ⊓ (RLD)ing ⇔
x ×FCD y ∈ atoms g : x ×RLD y ̸≍ f ⊓ (RLD)ing ⇔ x ×FCD y ∈ atoms g : x ×RLD y ̸≍
f ⇔ x ×FCD y ∈ atoms g ∧ x ×FCD y ⊑ (FCD)f ⇔ x [g ⊓ (FCD)f ] y.

Thus (FCD)(f ⊓ (RLD)ing) = g ⊓ (FCD)f . Consequently f ⊓ (RLD)ing = ⊥ ⇔
g ⊓ (FCD)f = ⊥ that is g ̸≍ (FCD)f ⇔ f ̸≍ (RLD)ing.

It is complete by theorem 1095. □

We will also prove in another way that (FCD), (RLD)in are components of
pointfree funcoids:

Theorem 2390. (RLD)in is a component of a pointfree funcoid (between filters
on boolean lattices).

Proof. Consider the pointfree funcoid R defined by the formula ⟨R⟩∗
F =

(RLD)inF for binary relations F (obviously it does exists). Then ⟨R⟩f =
⟨R⟩

dFCD upΓ f =
dRLD

F ∈upΓ f ⟨R⟩∗
F =

dRLD
F ∈upΓ f (RLD)inF = (RLD)in

dFCD
F ∈upΓ f F =

(RLD)inf . □

Theorem 2391. (FCD) is a component of a complete pointfree funcoid (be-
tween filters on boolean lattices).

Proof. Consider the pointfree funcoid Q defined by the formula
⟨Q⟩∗

F = (FCD)F for binary relations F (obviously it does exists). Then
⟨Q⟩f = ⟨Q⟩

dRLD up f = (because up f is a filter base) =
dFCD

F ∈up f ⟨Q⟩∗
F =

dFCD
F ∈up f (FCD)F =

dFCD
F ∈up f F =

dFCD up f = (FCD)f . □

Proposition 2392. (FCD)
d

S =
d

f∈S(FCD)f if S is a filter base of reloids
(with the same sources and destinations).

Proof. Theorem 839. □

Conjecture 2393. (RLD)in
d

S =
d

f∈S(RLD)inf if S is a filter base of fun-
coids (with the same sources and destinations).
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CHAPTER 17

Manifolds and surfaces

1. Sides of a surface

Definition 2394. Let µ be an endofuncoid on a set U . Surface side of a
set T ⊆ Ob µ is a connected component (regarding µ) of the filter (⟨µ⟩∗

T ) \ T .
FiXme: µ is used twice in this definition. We may generalize for two different
funcoids instead.

Keep in mind that the above definition may work nicely if µ is a complete
funcoid induced by a topological space.

Example 2395. For an Rn−1 subspace T of a Rn (n ≥ 1) euclidean space and
the complete funcoid µ induced by the usual topology:

1◦. T has exactly two surface sides.
2◦. The filter ⟨µ⟩∗@{a} \ T (for every a ∈ T ) has exactly two connected

components.
Proof. Without loss of generality assume that

T =
{

(x0, x1, . . . , xn−2, 0)
x0, x1, . . . , xn−2 ∈ R

}
; a = (0, . . . , 0).

We have

⟨µ⟩∗@{a} =
(

↑
{

v ∈ Rn

vn−1 > 0

}
⊓ ⟨µ⟩∗@{a}

)
⊔

(
↑

{
v ∈ Rn

vn−1 < 0

}
⊓ ⟨µ⟩∗@{a}

)
.

Let us prove that ↑
{

v∈Rn

vn−1>0

}
⊓ ⟨µ⟩∗@{a} and ↑

{
v∈Rn

vn−1<0

}
⊓ ⟨µ⟩∗@{a} are

connected components.
?? □

1.1. Special points. We will start from the example of open T =
{

(x,y,0)
x2+y2<1

}
and closed T =

{
(x,y,0)

x2+y2≤1

}
disks in R3.

Exercise 2396. Prove that open disk (in a usual 3-dimensional space) has two
surface sides and closed disk has one surface side.

2. Special points

Definition 2397. Surface cardinality of a point a (an element of the set Ob µ)
is the cardinality of the set of connected components of the filter ⟨µ⟩∗{a} \ T .

Definition 2398. Cardinality regular point is a point a, which has a neigh-
borhood (X ∈ up⟨µ⟩∗{a}) such that all points x ∈ X ∩ T are of the same surface
cardinality as the point a.

Cardinality special point is a point which is not cardinality regular.
Definition 2399. Isomorphism regular point is a point a, which has a neigh-

borhood (X ∈ up⟨µ⟩∗{a}) such that for all points x ∈ X ∩ T the filter ⟨µ⟩∗{a} is
isomorphic to ⟨µ⟩∗{x}.

Isomorphism special point is a point which is not isomorphism regular.
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(a) Three surface sides

(b) Two surface sides

Figure 15. Examples of surface cardinality

FiXme: Try to replace isomorphism f with some kind of filter embedding.
Consider the dihedral angle T produced by two half-planes. Are the points of

intersection of the half-planes isomorphism-special? (They should not be considered
special. If they are special, this is a probably flaw in the definition of isomorphism
special.)

Consider union T of two intersecting lines on a plane. The intersection may be
considered as a special point, because it has more connected components that the
rest. We don’t want to consider it special, however. We can restrict to consider
special only points which have less connected components (rather than more) to
correct this trouble. Also try to define it with some kind of morphisms of filters
instead of isomorphism as in isomorphism-special.

Exercise 2400. Excluding special points (either cardinality or isomorphism)
from closed disk produces open disk.

Let us note that special points of closed disk have surface cardinality 1 which
is less than surface cardinality (2) of regular points. So, it is a conceivable idea to
consider special points which have lesser surface cardinality than nearby points.

Consider the following two subsets of a plane (the lines are the set T , the small
black blob is the point a, and the cyan blob symbolizes the filter (⟨µ⟩∗{a}) \ T ):

For one of the sets surface cardinality of a is 3 and for another it is 2.
Now define shift special points.
Let I be an interval on R (containing zero?)
A point a is shift special if there exists a transformation (that is a continuous

function f : I × µ → µ such that:
1◦. f(0) is identity. FiXme: Is this condition needed?
2◦. for every sufficiently small ϵ > 0 we have f(ϵ, a) ∈ T ;
3◦. there is ϵ > 0 such that for every 0 < ϵ′ < ϵ we have f(ϵ′) being not

continuous at a regarding complete funcoid defined by the function x 7→
⟨µ⟩∗{x} \ T .

We may consider to additonally require that every f(ϵ) is isomorphism of fun-
coids.

Example 2401. T is disk
{

(x,y,0)
x2+y2≤1

}
. f is the contraction (ϵ, v) 7→ 1

1+ϵ v.
a = (1, 0, 0).

In the usual topology f is continuous. In x 7→ ⟨µ⟩∗{x}\T we have the function
ϵ 7→ f(ϵ) not continuous at zero. So a is a shift special point.

Proof. f(0)(v) = v. Thus ⟨f(0)⟩(⟨µ⟩∗{a} \ T ) = ⟨µ⟩∗{a} \ T intersects the
plane Z = 0. But f(0, a)

?? □

Question 2402. Can we exclude real numbers from the play?

Question 2403. How cardinality special points, isomorphism special points
and shift special points are related with each others?
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Question 2404. How the number of surface sides is related with usual surface
sides for manifolds? https://en.wikipedia.org/wiki/Orientability#Orientability_
of_manifolds

Remark 2405. Manifolds have no special points. (Prove!)

Prove that 2-manifold image which special points removed has the same number
of sides as the defined above.

Another way to define special points: A special point is a point such that
T ⊓⟨µ⟩{a} is not isomorphic to T ⊓⟨µ⟩{x} for nearby points x. Consider replacement
of isomorphism with injection, surjection, etc. here and above.

How many sides has in R3 a plane without one point?
Easy way to spot special points: They are boundary points in the topology (or

funcoid) induced on T . Alternatively we can consider points whose neighborhood
in T is different (as non-isomorphic or maybe non-injective or non-surjective or
like this) than of nearby points. Thus another way to remove special points: use
interior funcoid.

https://math.stackexchange.com/q/2836833/4876

https://en.wikipedia.org/wiki/Orientability#Orientability_of_manifolds
https://en.wikipedia.org/wiki/Orientability#Orientability_of_manifolds
https://math.stackexchange.com/q/2836833/4876
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